AGATA Week Sept. 2011 Darmstadt

Status of the AGATA detectors

Andreas Wiens
University of Cologne

B. Birkenbach, J. Eberth, H. Hess,

D. Lersch, G. Pascovici, F. Radeck,

P. Reiter, D. Schneiders, T.

Steinbach - IKP Cologne

B. Bruyneel – CEA Saclay

H.-G. Thomas - CTT

Outline

- Acceptable detectors (C004, B008, B010, B004)
- Malfunctioning detectors (B007, C006, C007)
- Performance of ATCs
- Annealing of crystals
- Optimized energy resolution
 - Averaging of core and segment signals
 - Electron trapping correction

AGATA crystals – B010

Core:

at 1.3MeV: ≤ 2.35keV

at 122keV: ≤ 1.35keV

Segments:

at 1.3MeV: \leq 2.30keV, mean \leq 2.10keV at 60keV: \leq 1.30keV, mean \leq 1.20keV

Crosstalk ≤1‰

Detector within specification

AGATA crystals – C004

First delivery: 01.09.07

Shipment to Ankara

Repair

Test in Cologne in April 10

Detector returned Nov 10 and repaired

Last delivery: March 11

mounted in ATC5

AGATA crystals – B008

crosstalk test pending

Detector within specification

AGATA crystals – B004

First delivery: Dec 07 with missing segment F6 and opposite impurity concentration gradient

Second delivery: June 08

Returned for repair

Latest delivery: Jul 11

Core FWHM @ 60 keV = 1.27 keV Small crystal size first results promising

Crystal problems

B007:

Leakage current on core and segments F1 and F5 (noise > 200 mV)

CAT failed!

Detector returned to Canberra

C006:

Operated in ATC3 and annealed after neutron damage Leakage current of 5 nA on core and segment B1 with FWHM =10 keV Detector returned to Canberra

C007:

Acceptance test in Saclay with poor core resolution

Mounted in ATC in Cologne – leakage current on core and segment E2

Mounted in test cryostat - leakage current confirmed

Annealed at 80 ° for 24 h to recover performace

Mounted in ATC – leakage current on core and segments E1, F1 and F6

Detector will be shipped to Canberra son

Assembly of ATC5

- Defect crystals C004, C007,
 C006 and B007 delayed completion
- Full set of working crystals was only available in May 11
- ATC5 equipped with A004, B006 and C004

Performance of ATC5 @INFN

Energy resolution of all ATCs at low energy

Detector	Core FWHM [keV]		Segment average FWHM [keV]	
	Single cryostat	ATC @ IKP	Single cryostat	ATC @ IKP
ATC1:				
A001	1.34	1.44	1.079 ± 0.072	1.012 ± 0.053
B002	1.29	1.41	1.094 ± 0.086	1.039 ± 0.07
C002	1.275	1.21	1.034 ± 0.079	0.965 ± 0.063
ATC2:				
A003	1.22	1.42	1.142 ± 0.08	1.053 ± 0.065
B003	1.28	1.36	1.062 ± 0.068	0.995 ± 0.073
C005	1.24	1.49	1.163 ± 0.073	1.14 ± 0.107
ATC3:				
A002	1.26	1.44	1.033 ± 0.075	0.931 ± 0.11
B005	1.08	1.43	1.053 ± 0.078	1.045 ± 0.076
C006	1.09	1.42	1.153 ± 0.099	1.144 ± 0.106
ATC4:				
A005	1.23	1.28	1.039 ± 0.087	1.108 ± 0.171
B001	1.29	1.27	1.021 ± 0.071	1.029 ± 0.098
C003	1.16	1.33	0.998 ± 0.092	1.11 ± 0.378
ATC5:				
A004	1.27	1.21	1.17 ± 0.08	
B009	1.36	1.54	1.11 ± 0.07	1.05 ± 0.11
C004	1.3		1.11 ± 0.08	

Energy resolution of all ATCs at high energy

Detector	Core FWHM [keV]			Segment average FWHM [keV]		
	Single cryostat	ATC @ IKP	ATC @ INFN	Single cryostat	ATC @ IKP	ATC @ INFN
ATC1:						
A001	2.33	2.46	2.4	2.092 ± 0.156	2.194 ± 0.099	2.007 ± 0.129
B002	2.27	2.33	2.28	2.131 ± 0.105	2.099 ± 0.142	1.985 ± 0.085
C002	2.25	2.33	2.2	2.027 ± 0.115	2.108 ± 0.117	1.943 ± 0.114
ATC2:						
A003	2.280	2.41	2.56	2.098 ± 0.128	2.064 ± 0.078	2.057 ± 0.095
B003	2.23	2.52	2.42	2.081 ± 0.106	2.024 ± 0.086	1.937 ± 0.078
C005	2.2	2.21	2.39	2.207 ± 0.088	2.207 ± 0.077	2.077 ± 0.106
ATC3:						
A002	2.31	2.4	2.52	2.067 ± 0.108	2.019 ± 0.088	1.978 ± 0.087
B005	2.29	2.42	2.485	2.093 ± 0.139	2.132 ± 0.111	2.039 ± 0.127
C006	2.16	2.27	2.58	2.121 ± 0.087	2.085 ± 0.089	2.131 ± 0.148
ATC4:						
A005	2.230	2.400	2.190	2.033 ± 0.102	2.082 ± 0.127	1.914 ± 0.108
B001	2.170	2.500	2.300	2.055 ± 0.113	2.041 ± 0.105	1.906 ± 0.110
C003	2.340	2.350	2.400	2.084 ± 0.110	2.081 ± 0.092	2.042 ± 0.207
ATC5:						
A004	2.31	2.36	2.33	2.10 ± 0.11		2.04 ± 0.12
B009	2.33	2.49	2.63	2.03 ± 0.14		1.96 ± 0.14
C004	2.23		2.26	2.17 ± 0.1		2.04 ± 0.24

Repair of ATC1 & ATC4 after warm up

Crystals of ATC4 not fully recovered due to stronger neutron damage

Neutron damaged detectors after annealing

ATC1 fully recovered

Thermal properties of ATC4

Change of performance during operation

FWHM of some segments orientation dependent

Lower temperature of end cap of $\Delta t=2^{\circ}C$

ATC4 will be inspected by CTT

Annealing of detectors

12 crystals annealed ATC2 & ATC3 in Legnaro (Sept 10)

ATC1 & ATC4 in Cologne (Nov 11)

C006 (ATC3) broken with leakage current after annealing

Remaining neutron damage - Insufficient annealing time?

Annealing of detectors

Annealing time investigation with detector A005

More than 10 h at full temperature needed

Leakage current on A005 segment B6 after second annealing

AGATA double cryostats

New feed throughs

Ultra-high vacuum capable

Will be part on the first double cryostat

Summary Part 1

- Demonstrator completed!
- B008, B010, C004 accepted
- B004 promising
- B007, C006, C007 and A005 with leakage current
- Repair of ATC1 and ATC4
- Longer annealing time needed
- Detectors vulnerable to annealing

Improving signal-to-noise ratio

Combining core and segment signals 62

$$W_{T} = \sqrt{W_{D}^{2} + W_{X}^{2} + \left(\frac{1}{\sqrt{2}}W_{E}\right)^{2}}$$

Improvement applies to uncorrelated electronic noise

Trapping correction

Electron trapping due to crystal defects and impurities in n-type germanium

Large drift length causes trapping

Position dependent trapping sensitivity calculated

Sensitivities used to achieve charge collection efficiency

B. Bruyneel et al., LNL Annual Report (2011) 64–65.

Position-dependent energy

2000

1500

Core segments average corrected

Improved energy resolution

Combination of all multifold events

Multifold events with noise of more than one preamplifier

Improvement of energy resolution of 20 % in the whole energy range

2 keV energy resoltution @ 1.33 MeV

Separation of the noise contributions

Fit of radius-dependent trapping FWHM

$$W_X \propto \sqrt{(1-\eta(r))}$$

$$W_T^2 = W_D^2 + W_X^2 + W_E^2$$

$$W_T = \sqrt{a \cdot E + b \cdot E^2 + c}$$

Position-dependent energy resolution used for Fano factor of 0.095 ± 0.005

Summary & Outlook

- Segmented detectors provide new analysis methods
- Increased energy resolution by combining core and segment signals & trapping correction
- FWHM of 2 keV @ 1.3 MeV

Position-dependent energy

FWHM @ 1.3MeV original corrected Core:

2.22 2.11

Segments:

1.97

1333 1332.5 1331.5 1330.5 10 15 20 25 30 35 40

Core segments Average:

1.89 1.82

Position uncertainty of 4 mm Radius dependent energy uncertainty

Improvement in PSA =improvement in FWH

Averaged signal of core and

segments

$$W_T^2 = W_D^2 + W_X^2 + W_E^2$$

$$W_X = 2.35\sqrt{\epsilon K E_0(1 - \eta(r))}$$

Trapping sensitivity

•DEFINITION: electron / hole sensitivity of electrode i to trapping

$$s_{e,h}^i = \frac{d\eta_{e,h}^i}{dN_t} \mid_{N_t = 0}$$

- = fraction missing due to trapping
- + induced charge due to trail of trapped charges

•Relation to total collection efficiency:

$$\eta_{tot}^{i}(\vec{x}_{0}) = 1 + \left[N_{e} s_{e}^{i}(\vec{x}_{0}) + N_{h} s_{h}^{i}(\vec{x}_{0}) \right] + O(2)$$

- •Ne : density of electron traps, Nh: density of hole traps
- •O(2) higher order terms in taylor expansion negligible
- sensitivities can be calculated in advance
- •Ne, Nh are fit parameters

Signal averaging for B002 & C002

Energy [keV]	Core FWHM	Segments FWHM	Average FWHM
122	1.394	1.208	1.0
344	1.608	1.388	1.221
964	2.091	1.893	1.774
1408	2.457	2.259	2.174

Energy [keV]	Core FWHM	Segments FWHM	Average FWHM
122	1.448	1.139	0.989
344	1.603	1.308	1.189
964	1.986	1.729	1.640
1408	2.315	2.027	2.013

AGATA tripel cluster ATC1

Measured at Köln and Legnaro

Mean values of energy resolution of segments at 60 keV and 1,3 MeV:

A001: 1011 +/- 53 eV 2,00 keV

B002: 1039 +/- 70 eV 1,98 keV

C002: 965 +/- 63 eV 1,94 keV

A005