The Electric Dipole Response of Atomic Nuclei – from Giants to Pygmies

Andreas Zilges Institut für Kernphysik Universität zu Köln

The Electric Dipole Response of Atomic Nuclei – from Giants to Pygmies

- From Giants to Pygmies a short history
- Electromagnetic interaction: Methods and experimental status
- Hadronic interaction: Methods and experimental status
- Open questions and new experiments

Andreas Zilges

Institut für Kernphysik, Universität zu Köln

Dipole response of atomic nuclei

1937: Atomumwandlungen durch y-Strahlen.

Von W. Bothe und W. Gentner in Heidelberg.

Z. Phys. 106 (1937) 236

75 years ago

1938: Nuclear Photo-effects

THE beautiful experiments of Bothe and Gentner¹ on the ejection of neutrons from heavier nuclei by means of γ -rays with energy of about 17 M.v. resulting from impact of protons on lithium, have revealed a remarkable selectivity of these nuclear photoeffects.

N. Bohr.

Universitetets Institut for Teoretisk Fysik, Copenhagen, ø Jan. 31.

nature **141** (1938) 326

1937: Atomumwandlungen durch y-Strahlen.

Von W. Bothe und W. Gentner in Heidelberg.

Z. Phys. 106 (1937) 236

1944:

QUADRUPOLE AND DIPOLE Y-RADIATION OF NUCLEI

By A. MIGDAL

J. Phys. (USSR) 8 (1944) 331

1947:

Photo-Fission in Heavy Elements*

G. C. BALDWIN AND G. S. KLAIBER Research Laboratory, General Electric Company, Schenectady, New York

Phys. Rev. 71 (1947) 3

1937: Atomumwandlungen durch y-Strahlen.

Von W. Bothe und W. Gentner in Heidelberg.

Z. Phys. 106 (1937) 236

1944:

QUADRUPOLE AND DIPOLE Y-RADIATION OF NUCLEI

By A. MIGDAL

J. Phys. (USSR) 8 (1944) 331

1947:

Photo-Fission in Heavy Elements*

G. C. BALDWIN AND G. S. KLAIBER Research Laboratory, General Electric Company, Schenectady, New York

Phys. Rev. 71 (1947) 3

Pygmy Dipole Resonance (PDR)

1961:

NEUTRON CAPTURE GAMMA RAYS¹

By G. A. BARTHOLOMEW

Neutron Physics Branch, Chalk River Project, Atomic Energy of Canada Limited

Ann. Rev. Nucl. Sci. 11 (1961) 259

Pygmy Dipole Resonance (PDR)

1961:

NEUTRON CAPTURE GAMMA RAYS¹

By G. A. BARTHOLOMEW Neutron Physics Branch, Chalk River Project, Atomic Energy of Canada Limited

Ann. Rev. Nucl. Sci. 11 (1961) 259

1969: Effect of the pigmy resonance on the calculations of the neutron capture cross section

J. S. BRZOSKO, E. GIERLIK, A. SOLTAN, JR., AND Z. WILHELMI

Can. J. Phys. 47 (1969) 2850

1971:

Three-Fluid Hydrodynamical Model of Nuclei*

R. Mohan, M. Danos, and L.C. Biedenharn, Phys. Rev. C **3** (1971) 1740

Z protons, Z neutrons, N-Z excess neutrons

Pygmy Dipole Resonance (PDR)

2002: Concentration of electric dipole strength below the neutron separation energy in N = 82 nuclei

A. Zilges, S. Volz, M. Babilon, T. Hartmann, P. Mohr, K. Vogt

Phys. Lett. B **542** (2002) 43

From giants to pygmies

Relevance of PDR

- Universal "collective" excitation mode
- Connection to neutron star radius, neutron skin

P.-G. Reinhard and W. Nazarewicz, PRC **81** (2010) 051303(R) J. Erler et al., PRC **87** (2013) 044320

Relevance of PDR

- Universal collective excitation mode
- Connection to neutron star radius, neutron skin
- Slope of symmetry energy in EoS

A. Carbone et al. PRC **81** (2010) 041301(R)

Relevance of PDR

- Universal collective excitation mode
- Connection to neutron star radius, neutron skin

S. Goriely, PLB **436** (1998) 10

- Slope of symmetry energy in EoS
- Impact on nucleosynthesis

"PDR" in title or abstract of PRL, PRC, PLB, NPA

The Electric Dipole Response of Atomic Nuclei – from Giants to Pygmies

- From Giants to Pygmies a short history
- Electromagnetic interaction: Method and experimental status
- Hadronic interaction: Method and experimental status
- Open questions and new experiments

Study of the E1 strength distribution via electromagnetic interaction

Scattering of real photons (γ , γ ')

- $E_{\gamma} = 0 S_n$
- very selective excitation ($\Delta J=1 \text{ or } 2$)
- energy resolution ΔE =5-10 keV
- complex sensitivity limit
- only stable nuclei can be studied

E1 distribution in stable nuclei: (γ, γ')

N. Benouaret et al., PRC **79** (2009) 014303 D. Savran et al., PRC **84** (2011) 024326 S. Volz et al., NPA **779** (2006) 1 A. Zilges et al., PLB **542** (2002) 43

Sensitivity of (γ, γ') experiments

Sensitivity of (γ, γ') experiments

D. Savran, V. Yu. Ponomarev et al., PRC 84 (2011) 024326

Importance of sensitivity limit

D. Savran, V. Yu. Ponomarev et al., PRC 84 (2011) 024326

Scattering of virtual photons via (p,p') at 0°

- E_x = 0 25 MeV
- energy resolution $\Delta E=25 \text{ keV}$
- less selective, complex disentanglement
- only stable nuclei can be studied

A. Tamii et al., PRL 107 (2011) 062502

Coulomb interaction in inverse kinematics

PDR in radioactive nuclei

^{130,132}Sn @ 500 MeV/A on Pb LAND plus ALADIN plus Crystal Ball

P. Adrich et al., PRL 95 (2005) 132501

PDR in radioactive nuclei

Summed B(E1) strength of Pygmy Dipole Resonance

Parametrization of "exoticity"

chart of nuclides from: P.D. Cottle, nature 465 (2010) 430

The calculated neutron skin scales with the Coulomb corrected Fermi energy differences

D. Savran, T. Aumann, and A. Zilges, PPNP 70 (2013) 210

PDR vs. Coulomb corrected Fermy energy

D. Savran, T. Aumann, and A. Zilges, PPNP 70 (2013) 210

Some open questions

- What is the connection between the E1 strength below and above neutron threshold and in stable and radioactive nuclei?
 - \rightarrow systematic studies
- Is there an experimental approach to separate the low lying dipole strength (or PDR) from the GDR?
 - \rightarrow alternative excitation mechanism

The Electric Dipole Response of Atomic Nuclei – from Giants to Pygmies

- From Giants to Pygmies a short history
- Electromagnetic interaction: Method and experimental status
- Hadronic interaction: Method and experimental status
- Open questions and new experiments

Structure of the PDR: (γ , γ ') vs. (α , α ') vs. (p,p')

	(γ,γ′)	(α,α') @ 30 MeV/A	(p,p') @ 80 MeV/A
Interaction	Electromagnetic	Strong	Strong
Location of interaction	Whole nucleus	Surface	Surface
Isospin	Isovector E1 excitations	Isoscalar	lsoscalar/ Isovector
Multipolarity	E1, M1, E2	EO, E1, E2, E3,	EO, E1, E2,
ΔE	3-500 keV	50-200 keV	50-200 keV

A coincident detection of the γ decay enhances the selectivity and energy resolution of (α, α') and $(p, p') \rightarrow (\alpha, \alpha' \gamma)$ and $(p, p' \gamma)$

T.D. Poelhekken et al., PLB **278** (1992) 423

$(\alpha, \alpha' \gamma)$ and $(p, p' \gamma)$ experiments

D. Savran et al., NIM **A 564** (2006) 267 BBS@KVI (deceased 15/11/12) O° facility @ iThemba LABS BigRIPS@RIKEN

Structure of the PDR: (α , α ' γ) experiments

Janis Endres et al., PRL **105** (2010) 112503 Janis Endres et al., PRC **85** (2012) 064331

Splitting of the PDR: Experimental results

Splitting of the PDR: Theory for ¹²⁴Sn

J. Endres, E. Litvinova, V. Ponomarev et al., PRC 85 (2012) 064331

Splitting of the PDR: Interpretation from RQTBA

Janis Endres et al., PRC **85** (2012) 064331

Another hadronic probe: Inelastic scattering of ¹⁷O

A. Bracco, et al., INFN Legnaro

γ decay after inelastic scattering of ¹⁷O on ²⁰⁸Pb

L. Pellegri, A. Bracco, et al., EUNPC 2012

Further experimental observables to clarify the structure of low lying E1 strength

- Systematics (mass, N/Z, exoticity)
- Decay pattern, feeding
- Comparison of electromagnetic and hadronic excitation

Decay pattern of the PDR: γ^3 setup at HIGS

Isospin structure of the PDR in exotic nuclei: (α, α') in inverse kinematics at BigRIPS@RIKEN

PDR in exotic nuclei: R3B at FAIR

Reactions with Relativistic Radioactive Beams

- Kinematically complete measurements of reactions with high-energetic secondary beams
- Detection of all decay channels

PDR: Studies on lighter nuclei and theoretical aspects

see following talks by:

Sophie Péru

Julie Gibelin

Danilo Gambacurta

The Electric Dipole Response of Atomic Nuclei – from Giants to Pygmies

 V. Derya, J. Endres, A. Hennig, J. Mayer, L. Netterdon, S. Pascu, S. Pickstone, A. Sauerwein,
P. Scholz, <u>M. Spieker</u>, M. Weinert, and A. Z. Institut für Kernphysik, Universität zu Köln

M.N. Harakeh and H.J. Wörtche *KVI Groningen, The Netherlands*

D. Savran

Extreme Matter Institute EMMI, Darmstadt

supported by **DFG**

(ZI 510/4-2, SFB 634, INST 216/544-1, and BCGS)

(RII3-CT-2004-506065)