

Relevance of E1 strength

- Connection to neutron skin, neutron star radius
- Slope of symmetry energy in Equation of State
- Impact on nucleosynthesis
- Isotope identification

P.-G. Reinhard and W. Nazarewicz, PRC **81** (2010) 051303(R) J. Piekarewicz et al., PRC **85** (2012) 041302(R) J. Erler et al., PRC **87** (2013) 044320

A. Carbone et al. PRC **81** (2010) 041301(R) B.A. Brown and A. Schwenk, PRC **89** (2014) 011307(R)

S. Goriely, PLB **436** (1998) 10 E. Litvinova et al., NPA **823** (2009) 26

W. Bertozzi et al., NIM **B 241** (2005) 820 B.J. Quiter et al., IEEE Trans. Nucl. Science **58** (2011) 400

Giant Dipole Resonance (GDR)

1937:

Atomumwandlungen durch y-Strahlen.

Von W. Bothe und W. Gentner in Heidelberg.

Z. Phys. 106 (1937) 236

irradiation with photons with E_{γ} ~ 17 MeV from ⁷Li(p, γ)

1938: Nuclear Photo-effects

The beautiful experiments of Bothe and Gentner¹ on the ejection of neutrons from heavier nuclei by means of γ -rays with energy of about 17 M.v. resulting from impact of protons on lithium, have revealed a remarkable selectivity of these nuclear photoeffects....

N. Bohr.

Universitetets Institut for Teoretisk Fysik, Copenhagen, ø Jan. 31.

nature 141 (1938) 326

Giant Dipole Resonance (GDR)

1944:

QUADRUPOLE AND DIPOLE Y-RADIATION OF NUCLEI

By A. MIGDAL

J. Phys. (USSR) 8 (1944) 331

Giant Dipole Resonance (GDR)

1947:

Photo-Fission in Heavy Elements*

G. C. BALDWIN AND G. S. KLAIBER Research Laboratory, General Electric Company, Schenectady, New York

Phys. Rev. 71 (1947) 3

irradiation with bremsstrahlung photons from 100 MeV betatron

Giant Dipole Resonance (GDR)

M.N. Harakeh and A. van der Woude, "Giant Resonances", Oxford University Press, Oxford, UK, 2001

Pygmy Dipole Resonance (PDR)

1961:

NEUTRON CAPTURE GAMMA RAYS¹

By G. A. BARTHOLOMEW

Neutron Physics Branch, Chalk River Project, Atomic Energy of Canada Limited

Ann. Rev. Nucl. Sci. 11 (1961) 259

Pygmy Dipole Resonance (PDR)

1971:

Three-Fluid Hydrodynamical Model of Nuclei*

R. Mohan, M. Danos, and L.C. Biedenharn, Phys. Rev. C **3** (1971) 1740

Z protons, Z neutrons, N-Z excess neutrons

Pygmy Dipole Resonance (PDR)

1986:

Photon interactions below 9 MeV in Ba and Ce

R. M. Laszewski

Nuclear Physics Laboratory and Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820 (Received 20 March 1986)

Phys. Rev. C 34 (1986) 1114

Pygmy Dipole Resonance (PDR)

1997:

Dipole excitations to bound states in ¹¹⁶Sn and ¹²⁴Sn

K. Govaert,* F. Bauwens, J. Bryssinck, D. De Frenne, E. Jacobs, and W. Mondelaers Vakgroep Subatomaire en Stralingsfysica, University Gent, Proefluinstraat 86, 9000 Gent, Belgium

> L. Govor Russian Research Center ''Kurchatov Institute,'' Moscow, Russia

V. Yu. Ponomarev Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia (Received 22 December 1997)

Phys. Rev. C 57 (1997) 2229

Pygmy Dipole Resonance (PDR)

2013: Review

Experimental studies of the Pygmy Dipole Resonance

D. Savran^{a,b,*}, T. Aumann^{c,d}, A. Zilges^e

Prog. Part. Nucl. Phys. 70 (2013) 210

Pygmy Dipole Resonance (PDR)

Two phonon excitations: quadrupole-octupole (2⁺ \otimes 3⁻)

1962:

SCATTERING OF ALPHA-PARTICLES BY A VIBRATIONAL NUCLEUS*

By L. J. TASSIE[†] [Manuscript received February 8, 1962] Austr. J. Phys. 15 (1962) 135

Two phonon excitations ($2^+ \otimes 3^-$)

2006:

TOPICAL REVIEW

Low-lying dipole modes in vibrational nuclei studied by photon scattering

Ulrich Kneissl¹, Norbert Pietralla² and Andreas Zilges³

J. Phys. G. 32 (2006) R217

Dipole photoresponse of atomic nuclei

Dipole photoresponse of atomic nuclei

Polarized photons: A parity-meter

Krishichayan et al., Phys. Rev. C 91, 044328 (2015)

Summed B(E1) strength of "Pygmy" excitations

D. Savran, T. Aumann, and A. Zilges, PPNP 70 (2013) 210

Structure of the Pygmy Dipole Resonance

- Response to isoscalar/isovector probes
- Decay to excited states → Deniz Savran: We1-2
- Single-particle structure

Testing the isospin structure: (γ, γ') vs. (α, α') or (p, p')

	(γ,γ') or Coulex	(α,α') @ 30 MeV/A or (p,p') @ 80 MeV/A
Interaction	electromagnetic	strong
Location of interaction	whole nucleus (kR << 1)	surface
Isospin	isovector E1 excitations	dominant isoscalar
Multipolarity	E1, M1, E2	EO, E1, E2, E3,

A coincident detection of the γ decay enhances the selectivity (and possibly the energy resolution) \rightarrow (α , α ' γ) and (p,p' γ)

T.D. Poelhekken et al., PLB 278 (1992) 423

J. Endres et al., PRL **105** (2010) 112503 J. Endres et al., PRC **85** (2012) 064331

Splitting of strength: Experimental results

5000

6000

Energy [keV]

⁹⁴Μο(α, α'γ)

 $Mo(\gamma, \gamma^{*})$ 7000

Splitting of the PDR: Interpretation from RQTBA

Splitting of the PDR: Theoretical interpretation

Summed E1 strength derived from (α , α ')

Isospin structure of the PDR in stable nuclei: The CAGRA campaign 2016 @ RCNP

 $(\alpha, \alpha'\gamma) @ E_{\alpha} = 130 \text{ MeV} and (p, p'\gamma) @ E_{p} = 80 \text{ MeV}$ combining Grand Raiden spectrometer and 16 Compton suppressed HPGe Clover detectors

CAGRA

GRAND RAIDEN

Collaboration: Argonne – Cologne – KVI – Darmstadt – Milano – Osaka – NSCL

Conclusions

- The dipole response of atomic nuclei is complex including various fine structures.
- Different "collective" features emerge: Two-phonon excitations, PDR, GDR, mixed-symmetry states, scissors mode.
- Parity determination is mandatory.
- Measurements of various observables enable to determine structural differences and test theoretical models.

Potential of a polarized, tunable, high-intensity photon beam with very narrow band width

- Sensitive scanning of the photoresponse from the lowest energies to the 15-20 MeV region.
- Examination of smallest target samples including radioactive isotopes.
- Selective population and observation of all decay channels $(\gamma$ -decay branchings, neutrons, protons, fission).

Looking forward to ELI-NP!

Origin of Dipole Strength in Atomic Nuclei

V. Derya, M. Färber, J. Mayer, M. Müscher, S.G. Pickstone, P. Scholz, M. Spieker, M. Weinert, J. Wilhelmy, and A. Z. Institut für Kernphysik, University of Cologne

> M.N. Harakeh **KVI Groningen, The Netherlands**

B. Löher, **D. Savran** Extreme Matter Institute EMMI, Darmstadt

supported by: **DFG** (ZI 510/7-1, INST 216/544-1, and BCGS) Bundesministerium für Bildung und Forschung (05P2015 ELI-NP)