PHOTONS AND THE ATOMIC NUCLEUS: FROM FUNDAMENTAL RESEARCH TO APPLICATIONS

- Introduction
- Photon sources

Some research highlightsOutlook

Andreas Zilges University of Cologne Review article:

A.Z., D. Balabanski, J. Isaak, and N. Pietralla submitted to Prog. Part. Nucl. Phys.

June 2021 • online

Photons in the MeV range

 MeV-photons are abundant in the universe (Planck photon bath, e.g., from supernovae, neutron star mergers)

> → photon-nucleus interaction important, e.g., for the synthesis of elements - "Nuclear Astrophysics"

Photons in the MeV range

- MeV-photons are complementary to "standard" probes in nuclear physics and excite nuclei very selectively
 - → precision study of excitation modes in nuclei for Nuclear Structure and fundamental physics

- MeV-photons are very penetrative
 - \rightarrow various applications (e.g. cargo inspection)

Photonuclear reactions

Some facts on Nuclear Resonance Fluorescence

• typical γ decay width Γ of bound levels: \approx 0.1 eV

$$\Gamma = \frac{\hbar}{\tau} \approx \frac{658}{\tau \,/\,\mathrm{fs}}\,\mathrm{meV}$$

• thermal Doppler broadening Δ of line width $\approx {\rm eV}$

courtesy: U. Friman-Gayer

Some facts on Nuclear Resonance Fluorescence

- resonant "self absorption" in the target material reduces the on-resonance photon flux density
- effect depends on penetration depth and resonance strength

Photonuclear reactions with real photons

- pure EM interaction
- spin selectivity (mainly E1, M1, E2 transitions)
- strength selectivity
- many model-independent observables, e.g.:
 - excitation energies
 spin quantum numbers
 - parity quantum numbers level widths
 - Iifetimes decay branchings
 - multipole mixing ratios transition strengths

The first photonuclear experiment

1937: Atomumwandlungen durch y-Strahlen.

Von W. Bothe und W. Gentner in Heidelberg.

Z. Phys. 106 (1937) 236

⁷Li(p, γ)⁸Be @ 600 kV van de Graaff generator

Subsequent (γ,n) reactions produced radioactive isotopes.

 \rightarrow "giant resonance"

http://ark.cdlib.org/ark:/13030/ft5s200764/

Photons from bremsstrahlung

G.C. Baldwin and G.S. Klaiber, Phys. Rev. 71 (1947) 3

1969: F.R. Metzger et al. bremsstrahlung from van de Graaff accelerator for electrons

High resolution Nuclear Resonance Fluorescence (NRF)

1980s, 1990s: U. Kneissl et al., A. Richter et al.

Review: U. Kneissl, H.H. Pitz, and A.Z., PPNP 37 (1996) 349

Some bremsstrahlung facilities

HVRL@MIT: E(e⁻) < 3.5 MeV, I_{max} ≈ 100 μA

γELBE@HZDR: E(e⁻) < 13 MeV, I_{max} ≈ 1 mA

MT-25@JINR: E(e⁻) < 25 MeV, I_{max} ≈ 20 μA

MT-25@CAS: E(e⁻) < 25 MeV, I_{max} ≈ 20 μA

NSC KIPT@Kharkov: $E(e^{-}) < 95$ MeV, $I_{max} \approx 70$ mA (pulsed)

Limitations using bremsstrahlung

- no selectivity of excitation energy ("white" photon spectrum)
- strongly increasing continuous background at low energies
- background from γ decays of higher lying states
- beam only very weakly polarized (and only using a thin radiator)
- large amount (100s of mg) of target material needed

J. Wilhelmy et al., PRC 102 (2020) 044327

Photons from Laser Compton Backscattering (LCB)

1963: R. H. Milburn; F.R. Arutyunian and V.A. Tumanian

- polarized beam
- quasi-monoenergetic
- tunable energy

→ talks by C. Barty, C. Howell,Y. K. Wu, B. Hornberger

R.H. Milburn, PRL **10** (1963) 75 F.R. Arutyunian and V.A. Tumanian, PL **4** (1963) 176

Polarization of LCB beam

parity determination by measuring asymmetries

J. Beller et al., PLB 741 (2015) 128

Krishichayan et al., PRC 91 (2015) 044328

Energy profile of LCB beams

J. Wilhelmy et al., PRC 98 (2018) 034315

Tunable energy of LCB beams

T. Beck et al., PRL 125 (2020) 092501

Some low-energy LCB facilities

XGLS@CAS, Xi`an: $E_{max}(\gamma) < 3$ MeV, N_{γ} on target $< 10^8/s$, $\Delta E/E \approx 1-10\%$

UVSOR-III@NINS, Okazaki: $E_{max}(\gamma) < 5.4$ MeV, N_{γ} on target $< 10^{5}/s$, $\Delta E/E \approx 2.9\%$

VEGA@ELI-NP: $E_{max}(\gamma) < 19.5$ MeV, N_{γ} on target $\approx 10^8$ /s , $\Delta E/E < 0.5\%$ (from 2023)

★** **	

SLEGS@CAS, Shanghai: $E_{max}(\gamma) < 20$ MeV, N_{γ} on target $< 10^7/s$, $\Delta E/E < 5\%$ (from 2022)

HIγS@TUNL: $E_{max}(\gamma) < 100$ MeV, N_γ on target $< 10^9$ /s , Δ E/E \approx 0.8-10%

Selection of research highlights

Giant Dipole Resonance (GDR)

Ö

- GDR exhausts about 100% of the isovector E1 sum rule
- 1970's: Saclay and Livermore studies with photons from positron annihilation in flight
- fine structure in low energy tail → LCB beam at TERAS/ETL and at NewSUBARU (H. Utsunomiya et al., T. Kondo et al.)

S. Goriely et al., Phys. Rev. C **102** (2020) 064309

Giant Dipole Resonance (GDR)

H. Utsunomiya et al., PRC 100 (2019) 034605

Pygmy Dipole Resonance (PDR)

- first detected by Bartholemew in the 1950's (neutron capture)
- PDR exhausts about 1% of the isovector E1 sum rule
- scaling with neutron excess (exotic n-rich nuclei!)
- important for symmetry parameter in Equation of State (EoS)

D. Savran, T. Aumann, and A. Zilges, Prog. Part. Nucl. Phys. 70 (2013) 210

Pygmy Dipole Resonance (PDR)

 $(\vec{\gamma}, \gamma' \gamma'')$ coincidence experiments:

 γ^3 setup @HI γ S

B. Löher et al., NIM A 723 (2013) 136

→ talks by J. Isaak, M. Müscher

J. Isaak et al., Phys. Lett. B 788 (2019) 225 and PRC 103 (2021) 044317

Weak meson-nucleon coupling

- parity doublet in ²⁰Ne at 11.26 MeV
- use polarization of LCB photon beam (linear vs. circular) → level order, ΔE, I_{S+}/I_{S-}

 \rightarrow talk by V. Werner

J. Beller et al., PLB 741 (2015) 128

Drug inspection by photon scattering

• identification of isotopes by their nuclear fingerprint

H. Lan et al., nature Sci. Rep. 11 (2021) 1306

Drug inspection by photon scattering

 \rightarrow talk by K. Olshanoski

Theoretical value

H. Lan et al., nature Sci. Rep. 11 (2021) 1306

MeV photons as an invaluable tool for basic research and applications

ingredient I:

different	photon	sources
-----------	--------	---------

(intensity, bandwidth, beam spot size, polarization, dimension)

 1^{st} generation: radioactive atoms, (x, γ) reactions

2nd generation: bremsstrahlung, e⁺ annihilation

3rd generation: Laser Compton Backscattering

4th generation: LCB with superconducting ERL, multi-bunch

5th generation: Gamma Factory (partially stripped ions)

MeV photons as an invaluable tool for basic research and applications

ingredient II:

optimized detection capabilities

gamma detection (γ³@HIγS, Clover-Share, ELIADE@ELI-NP, ...) neutron detection (BLOWFISH, ELIGANT, ...) charged particle detection (SIDAR, ELISSA, O-TPC, ELITPC, ...)

ingredient III:

smart researchers with good ideas

PHOTONS AND THE ATOMIC NUCLEUS: FROM FUNDAMENTAL RESEARCH TO APPLICATIONS

D. Balabanski, J. Isaak, M. Müscher, N. Pietralla, D. Savran, J. Wilhelmy

supported by:

Bundesministerium für Bildung und Forschung

online

June 2021 •