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1 Understanding what the problem really is

It seems that we did not properly understand the problem that Gosia had with
inverse kinematics.

In all that follows, I will consider a test case of 193.6 MeV beam of 88Kr
on a 2.1 mg/cm2 thick 12C target with a compact-disc-shaped particle detector
which subtends the angles from 16.4◦ to 53.0◦ in the laboratory system.

Performing an energy loss calculation we find that we lose 103.3 MeV in the
target, giving an exit energy of 90.3 MeV.

The first excited state in 88Kr is at 0.7753 MeV.

Figure 1 shows how the angle of the scattered 88Kr and the recoiling 12C
depend on each other. We can see that the scattered 88Kr nuclei of the beam
have a maximum angle of 7.532◦. As the particle detector has a hole from 0 to
16.4◦, no 88Kr nuclei will be detected.

So for Gosia, in OP,GOSI under EXPT, we must specify Z1 as 36 and A1

as 88 to indicate that we are investigating 88Kr and Zn as -6 and An as 12 to
indicate that the other nucleus is 12C and we are interested in projectile exci-
tations. The value of θLAB must then be negative to indicate the target nuclei
are detected.

In OP,INTG, we need to specify the integration limits over energy as 90.3
to 193.6 MeV and the theta limits as 16.4◦ to 53.0◦, corresponding to the limits
of the particle detector.

So what do we give as meshpoints? For energy, it is clear. We select a range
a little bit wider than 90.3 to 193.6 MeV, say from 85 to 205 MeV in 15 MeV
steps. For theta it is more complicated. Gosia wants the projectile angle in the
laboratory frame not the target angle and it has to be negated (actually, I don’t
think the negation matters, because the code seems to take the sign from θLAB
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Figure 1: Correspondence between the angle of the scattered projectile and that
of the recoiling target nucleus in the laboratory frame.

given in EXPT). This is where we come to the problem. . .

The angle of the scattered projectile in the lab-
oratory frame is NOT well defined when recoil-
ing target nuclei are detected.

For any given target recoil angle in the laboratory frame, the corresponding
projectile scattering angle depends on the beam energy, but we are integrating
over this beam energy, so we have to evaluate it at several different energies!

Figure 2 shows the same as Fig. 1 but for the energies 85 MeV and 205 MeV,
corresponding to the extrema of the meshpoints and only within the range of
16.4◦ to 53.0◦ corresponding to the angular range of the particle detector.

The fact that the curves shown in Fig. 2 are double-valued is not really a
problem as the events for which the projectile scattering angle is less than a
degree correspond to very low target recoil energies (only a few hundred keV)
so they will not be detected. So for now at least, we will only consider the other
solution ranging from a scattered projectile angle of 4.64◦ at the inner edge of
the particle detector to a maximum of 7.53◦ about 2/3 of the way across the
particle detector and 6.77◦ at the outer edge at 85 MeV, with slightly higher
values at 205 MeV.
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Figure 2: Correspondence between the angle of the scattered projectile and that
of the recoiling target nucleus in the laboratory frame at two different energies
(85 and 205 MeV) showing just the range of target angle, which corresponds to
the particle detector.

Note that the angles to the left of the maximum correspond to higher angles
of the projectile scattering angle in the centre of mass frame, which can be ac-
cessed only with IKIN = 0, while angles to the right of the maximum correspond
to lower angles of the projectile scattering angle in the centre of mass frame,
which can be accessed only with IKIN = 1.

So with the current version of Gosia:

It is not possible to integrate over the whole
particle detector in a single integration.

Instead, it has to be broken up into two separate pieces. So at 85 MeV,
we could integrate from over target recoil angles of 16.4◦ to about 40.24◦ with
IKIN = 0 and from 40.24◦ to 53◦ with IKIN = 1 and then add up the results to
get the whole integral. But at 205 MeV, the maximum is not at 40.24◦ but at
40.75◦, so the angle for which we need to change from IKIN = 0 to IKIN = 1
is different. This means that it is not possible to integrate between 40.24◦ and
40.75◦ at all.

However, Gosia does not want the angles as target recoil angles, but as scat-
tered projectile angles. So at 85 MeV, we have to integrate with IKIN = 0 over
projectile scattering angles from 4.64◦ to 7.53◦ and with IKIN = 1 from 6.77◦
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to 7.53◦. However, for 205 MeV, 4.72◦ to 7.71◦ and from 7.03◦ to 7.71◦.

Now, Gosia automatically takes care of the calculation of these integration
limits, but we still have to set meshpoints. Since Gosia can only interpolate
and has problems with extrapolation, we need to have meshpoints which go
beyond the limits we want, or at very least up to them. Yet, we only have one
set of meshpoints, which has to work for all energies. So what happens, if we
set meshpoints from 4.64◦ to 7.71◦ for IKIN = 0. These points exactly span
the region which we need over the full range of energy. For 205 MeV, this is
fine, since 4.64◦ is lower than we need, but it is perfectly valid and 7.71◦ is
the maximum of the curve. However, for lower energies, this is no longer the
case. For example, at 85 MeV, there is no solution to the calculation of the
centre of mass angle, which gives a projectile scattering angle of 7.71◦, since
the maximum scattering angle is 7.53◦. This means that the highest meshpoint
we can set is 7.53◦, so we are forced to set our meshpoints from 4.64◦ to 7.53◦.
i.e. exactly the range for the lowest energy meshpoint. Similarly for the case of
IKIN = 1, we cannot set a meshpoint at 7.71◦, but have to use 7.53◦ instead,
so we set meshpoints from 6.77◦ to 7.53◦.

Figure 3: Correspondence between the angle of the scattered projectile and that
of the recoiling target nucleus in the laboratory frame at two different energies
(85 and 205 MeV) showing just the range of target angle, which corresponds to
the particle detector. The gaps in the curves correspond to regions of integra-
tion, which are not accessible and cannot be calculated.

The result of these effects is that there are regions, which are inaccessible
to the calculation. At 205 MeV, there is a gap corresponding to target recoil
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angles of 34.7◦ to 47.0◦. At 85 MeV this effect is less dramatic as we only have
the gap from 40.24◦ to 40.75◦ due to the change in the place where IKIN flips
over.This effect is illustrated in Fig. 3, where the red and green curves corre-
spond to two energies with IKIN = 0 and the blue and purple curves to the
same energies with IKIN = 1. The fact that the curves of a given energy do
not meet shows that we have values of the recoiling target nuclei angle, which
cannot be accessed in the calculation.

Moreover, since most of the cross section comes from the higher energies,
this hole in the 205 MeV range is fatal.

There are crucial regions over which we cannot
integrate at all.

The only workaround is to perform the integration over the energy loss in
the target manually, by dividing the target into virtual layers and performing
the calculation for each layer with a single energy. This is particularly tedious
as different limits and different meshpoints need to be set up for each energy.
Extreme care has to be taken by the user, because using a limit which is too
low results in missing cross-section and one which is too high results in Gosia
aborting with an error.

2 The suggested solution and why it won’t work

The solution suggested so far is to modify Gosia to do everything in the centre
of mass system and to modify Gosia to allow both IKIN values to be used in
one calculation. So what would this mean for Gosia?

Changing everything over to the centre of mass system, requires deep changes
throughout Gosia. It is highly non-trivial. Every single formula needs to be
checked as to whether it changes when passing from the centre of mass system
to the laboratory system. A modification of this order is so complicated, that
it would be better to completely rewrite Gosia from scratch, than to under-
take such a risky change with the existing code. Moreover, it does not solve
the problem. The centre of mass angle, whether for the recoiling target or the
scattered projectile nuclei (since the two just differ by π), is undefined in this
problem, because the transformation from the laboratory frame of the detected
particle to the centre of mass angle depends on the beam energy which we
are integrating over. So the appropriate limits in the centre of mass system
change with the energy loss in the target.
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The only frame, in which it makes any sense
to set limits, is the laboratory frame of the de-
tected particle.

This is because this is the frame of reference of the particle detector itself.
If the particle detector detects scattered projectiles, we need to set the limits
in the laboratory frame of the scattered particles. In this frame, the angles for
which a scattered projectile can hit the particle detector do not depend on the
energy of the beam. Similarly if the particle detector detects target recoils, we
need to set the limits in the laboratory frame of the recoiling target nuclei. In
this frame, the angles for which a target nucleus can recoil into the particle
detector do not depend on the energy of the beam.

Gosia requires the angular integration limits to be in the laboratory frame
of the detected particle. This is correct. It is the only thing that makes sense.

However, Gosia does not follow this convention for the meshpoints. Instead
it requires the meshpoints in the laboratory frame of the scattered projectile,
regardless of which particle is detected. For the case where projectiles are de-
tected, this is fine, of course, but when target nuclei are detected, it results in
the problem of meshpoints that cannot be set correctly.

The suggestion to have Gosia integrate over both IKIN = 0 and IKIN = 1
values is feasible, but would entail quite a bit of modification to OP,INTG. The
user would have to specify IKIN = 3 or 4 and for IKIN = 4 the input would be
different. Then these values would have to be preserved, while the usual rou-
tines are called with IKIN = 0 or 1. This means an extra loop over IKIN = 0
and 1 and an extra pair of limits for the case of IKIN = 4 and some extra logic.
That is not a trivial modification, but it is possible. However, it would only
close up the small gap at 85 MeV between 40.24◦ and 40.75◦ and do nothing to
address the large gap at the higher energies.

3 What should we do?

From the above, we have learnt the following things:

• The only frame of reference we should be using is the laboratory frame of
the detected particles.

• Gosia does it right for the integration limits.

• Gosia does it right for the meshpoints, if the scattered projectiles are
detected.

• Gosia does the wrong thing, if the recoiling target nuclei are detected.
This is the crux of the problem.
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From this, the obvious thing to do is to give up the convention that the
meshpoints are specified for the scattered projectile and instead use laboratory
angles for the detected particle.

Then we must convert these angles into the scattered projectile’s laboratory
frame for each energy and pass that value to the rest of Gosia, which would be
unchanged. This can be implemented as a single routine, which is called inside
both the energy and theta meshpoint loops, where the value tta is normally set
to SIGN(YV(ktt),tth) where YV are the angles read from the input file, ktt is
the index of the current theta value being evaluated, and tth is the value of
θLAB set in EXPT. This means that tta takes the value of YV(ktt) but the sign
of θLAB . If instead, we require YV to be angles in the detected particles labo-
ratory frame, this is the point where we can convert from YV in the detected
particle’s laboratory frame to tta in the scattered projectile’s laboratory frame,
if these frames differ.

4 How do we convert between recoiling target
and scattered projectile laboratory frames?

The problem corresponds to looking up the target recoil angle on Fig. 1 and
finding the corresponding scattered projectile angle. As we can see, there are
two solutions in general. However, the lower value will generally correspond to
target nuclei with too little energy to be detected.

Let θpCM
be the angle of the scattered projectile in the centre of mass frame

and θpLab
be the equivalent in the laboratory frame, while θtCM

and θtLab
are

the equivalents for the target recoils.

We can write:
tan θpLab

=
sin θpCM

τ + cos θpCM

(1)

and

tan θtLab
=

sin θtCM

τp + cos θtCM

(2)

where
τ = τp

Mp

Mt
(3)

and

τp =

√
Ep

Epmin

(4)

where
Epmin

= Ep − Ex × ared (5)

7



and the reduced mass ared is given by

ared = 1 +
Mp

Mt
(6)

and Ep is the beam energy, Ex is the energy of the excited state indicated
by the parameter NCM (by default the first excited state), and Mp and Mt are
the projectile and target nuclei masses in AMU, respectively.

Since
θpCM

= π − θtCM
(7)

we can substitute in Eq. 2 and get

tan θtLab
=

sin θpCM

τp − cos θpCM

(8)

So the problem is one of inverting Eq. 8 to calculate θpCM
for a given θtLab

and then substituting this value of θpCM
in Eq. 1 to obtain θpLab

, as required.

Let x = cos θpCM
and y = tan θtLab

. Then we have:

y =
√

1− x2

τp − x
(9)

or

yτp − xy =
√

1− x2 (10)

Squaring both sides we get a quadratic equation in x:

x2(1 + y2)− 2τpy2x+ τ2
p y

2 − 1 = 0 (11)

Solving for x we get:

x =
τpy

2 ±
√
τ2
p y

4 − (1 + y2)(τ2
p y

2 − 1)

(1 + y2)
(12)

Once we have x = cos θpCM
, we can substitute into Eq. 1.

θpLab
= arctan

√
1− x2

τ + x
(13)

This still leaves the problem of IKIN. However, we can sort that out too. We
can find the value of θpCM

for which θpLab
has its maximum by differentiating

Eq. 1 and setting it to zero. Once we have this value, we can substitute in Eq.
2 to get the corresponding value of θtLab

, which we can compare with the value
for which we are calculating and from that we can figure out IKIN.

So the problem is to evaluate:
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d

dθpCM

(
arctan

(
sin θpCM

τ + cos θpCM

))
= 0 (14)

In fact, it turns out that we only need to evaluate:

d

dθpCM

(
sin θpCM

τ + cos θpCM

)
= 0 (15)

since the arc tangent only introduces a 1/(1 + x2) term, which cannot be
zero for real values of θpCM

.

let u = sin θpCM
and v = τ + cos θpCM

.

(τ + cos θpCM
)( d
θpCM

(sin θpCM
))− (sin θpCM

)( d
θpCM

(τ + cos θpCM
))

(τ + cos θpCM
)2

= 0 (16)

or

(τ + cos θpCM
)(cos θpCM

)− (sin θpCM
)(− sin θpCM

) = 0 (17)

τ cos θpCM
+ cos2 θpCM

+ sin2 θpCM
= 0 (18)

cos θpCM
= −1

τ
(19)

Then we just substitute this value of θpCM
into Eq. 2 and if the value of θtLab

that we have to evaluate is greater than this value, we set IKIN = 1, otherwise
we set IKIN = 0.

5 What about the other solution?

So far, we have neglected the second solution corresponding to the minus sign in
Eq. 12. It is clear that in the specific case of 88Kr that we have considered here,
this is not a problem. The lower solution, within the angle ranges of interest
correspond to tiny target recoil energies, that probably don’t even get out of
the target, much less get detected in the particle detector. However, it is not
clear that this is generally true.

However, we cannot just add in these events with the second solution, be-
cause although they are perfectly valid events, even if in some special case, some
of them are detectable, in most cases most of them, if not all of them, will not
be detectable. However, the Coulomb excitation cross section for these nuclei is
very large. In other words, we have a very high probability of Coulomb exciting
the nuclei so that the target nuclei have virtually no energy and the projectile
is virtually undeviated, but we cannot detect these events, because of their low
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energy.

The correct thing to do would be to include these events, but with a gate on
the energy, corresponding to the real detection threshold of the system. This
could be done, but it would need some extra input, and it is not clear whether
such cases will ever really come up.

Should we integrate over both solutions with
an energy cut-off or should we just ignore the
lower solution?

6 Implementation

As we need to change the input format to give the angle of the detected particle
rather than always using that of the scattered projectile, we cannot do this in
OP,INTG without breaking compatibility. For this reason, I have chosen to add
an OP,INTI which is identical (cut and paste) to the OP,INTG code, except
that duplicate FORMAT statements have been removed and duplicate labels
have been renumbered and that the new INVKIN subroutine is invoked if the
sign of θLAB is negative.

The new code is in OP,INTI and there are no
changes to OP,INTG.

To use it, just replace OP,INTG with OP,INTI and give the laboratory
angles of the detected particle for the meshpoints, rather than for the scattered
projectile.

7 The INVKIN subroutine

C----------------------------------------------------------------------
C SUBROUTINE INVKIN
C
C Called by: GOSIA
C
C Purpose: calculate the angle of the scattered projectile in the lab frame
C when the user gave the angle of the recoiling target nucleus in
C the lab frame. There are two solutions to this problem, so Iflag
C = 1 selects the larger angle one and Iflag = 2 the smaller one.
C Note that the smaller angle (Iflag = 2) corresponds to very low
C energies of the recoiling target nucleus, which probably either
C don’t get out of the target or don’t get detected. So Iflag = 2
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C is probably not very useful! Also, this routine calculates the
C correct value of the kinematic flag IKIN.
C
C Formal parameters:
C E_p - Beam energy in MeV (readonly)
C E_x - energy of excited state to use for kinematic in MeV (readonly)
C M_p - mass of projectile nuclei in AMU (readonly)
C M_t - mass of target nuclei in AMU (readonly)
C Theta_t - theta of recoiling target nucleus in lab frame (readonly)
C Theta_p - theta of scattered projectile in lab frame (writeonly)
C Iflag - flag to select one of two possible solutions (readonly)
C Ikin - kinematic flag (writeonly)

SUBROUTINE INVKIN(E_p, E_x , M_p, M_t , Theta_t , Theta_p ,
& Iflag , Ikin)

REAL*8 E_p , M_p , M_t , Theta_t , Theta_p , E_x
REAL*8 ared , epmin , t , x(2), y , thres
INTEGER*4 Iflag , Ikin

C Reduced mass

ared = 1 + M_p / M_t

C Excitation energy of inelastically scattered particle when state at
C energy E_x is excited

epmin = E_p - E_x * ared

C Tau

taup = sqrt(E_p / epmin)
tau = taup * M_p / M_t

C Calculate the two solutions

y = tan(theta_t/57.2957795)
t = taup * taup * y * y * y * y -
& (1 + y * y) * (taup * taup * y * y - 1)
t = sqrt(t)
x(1) = (taup * y * y + t) / (1 + y * y)
x(1) = atan2(sqrt(1 - x(1) * x(1)), tau + x(1))
x(2) = (taup * y * y - t) / (1 + y * y)
x(2) = atan2(sqrt(1 - x(2) * x(2)), tau + x(2))

C Select the solution we want according to the flag. Note that the
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C solution with the lower angle corresponds to target recoils which
C are probably undetectable.

IF ( Iflag.EQ.1 ) THEN
theta_p = MAX(x(1),x(2))*57.2957795

ELSE
theta_p = MIN(x(1),x(2))*57.2957795

ENDIF

C Calculate angle of scattered projectile in centre of mass frame, for
C which the maximum laboratory scattering angle is reached.

t = acos(-1./tau)

C Now calculate the arctangent of the corresponding angle for the
C recoiling target nuclei in the laboratory frame

thres = sin(t)/(taup-cos(t))

C So now, if y = tan(theta_t_lab) > thres, we are above the maximum and
C need the larger value of theta_p_cm, so we set Ikin to 1. Otherwise we
C are below the maximum and need the smaller value so we choose Ikin = 0.

IF ( y.GT.thres ) THEN
Ikin = 1

ELSE
Ikin = 0

ENDIF

END

8 Tests

Several tests have been made with this code.

8.1 OP,INTG check

As a first test, OP,INTG was run with the old and new code using an energy
range from 90.3 to 193.6 MeV, with energy meshpoints 90, 105, 120, 135, 150,
165, 180 and 195 MeV and θ meshpoints -4.36◦, -5.50◦, -6.42◦, -7.10◦ and -7.51◦

integrating from 16◦ to 34◦ in the target recoil angle.

These meshpoints correspond to, which correspond to 15◦, 20◦, 25◦, 30◦ and
35◦ for the target recoil at 142 MeV, which is the average energy in the target.
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This gave exactly identical results. This is not surprising, since OP,INTG is
unchanged in the new code.

8.2 OP,INTI check

The same test was performed, but with the new code using the OP,INTI option
and the angles given as target recoil angles.

Here, we see that the new code is giving a different set of angles for each
energy, but the same “RESPECTIVE TARGET SCATTERING ANGLE”:

CALCULATED YIELDS

EXPERIMENT 1 DETECTOR 1
ENERGY 90.000 MEV THETA -4.310 DEG

NI NF II IF YIELD NORMALIZED YIELD

RESPECTIVE TARGET SCATTERING ANGLE= 15.000 DEG

3 2 4.0 2.0 0.56298E-07 0.29934E-06
2 1 2.0 0.0 0.18807E+00 0.10000E+01

and

CALCULATED YIELDS

EXPERIMENT 1 DETECTOR 1
ENERGY 120.000 MEV THETA -4.338 DEG

NI NF II IF YIELD NORMALIZED YIELD

RESPECTIVE TARGET SCATTERING ANGLE= 15.000 DEG

3 2 4.0 2.0 0.34636E-04 0.15518E-04
2 1 2.0 0.0 0.22319E+01 0.10000E+01

Note how the “RESPECTIVE TARGET SCATTERING ANGLE” is the
same in both, but the THETA angle is different. It is the former that is given
in the input for OP,INTI in the new code and the THETA angle is calculated.
What is printed in the output is actually, what gosia calculates, when it goes
back from the calculated THETA to the target angle using the original code.
This should and does agree with the value in the input.

Quantity Old Code New Code Difference
Rutherford cross section 2564 2596 0.1 %
Yield 1st excited state 2.1221 2.1261 0.2 %
Yield 2nd excited state 7.0565 × 10−4 7.0338 × 10−4 0.3 %
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Although there is a small numerical difference, this is not significant. A
difference is inevitable, since we are using different meshpoints.

8.3 Test with other IKIN

The above tests were with IKIN = 0. The next test is with IKIN = 1 over angles
from 51◦ to 69◦ for the same energy range and energy meshpoints.

For the new code, the meshpoints were given as 47◦, 51◦, 54◦, 57◦, 60◦, 63◦,
66◦, 69◦ and 71◦.

For the old code, the corresponding values for the scattered projectile angle
were given evaluted at the mean energy: 7.46◦, 7.24◦, 6.95◦, 6.58◦, 6.15◦, 5.65◦,
5.10◦, 4.48◦ and 3.79◦.

This gives:

Quantity Old Code New Code Difference
Rutherford cross section 53900 47390 12.1 %
Yield 1st excited state 4.1988 4.4144 5.1 %
Yield 2nd excited state 2.8967 × 10−4 6.7095 × 10−4 132 %

So there are huge discrepancies here. However, this turns out to be because
we are integrating over the large target-recoil angles, which correspond to the
very small angles of the scattered projectile, where the Rutherford cross section
is very large and, more importantly, changes rapidly. Since the two codes are
effectively using different angles for the meshpoints, it is not surprising that
they differ, however this difference is not normal. Further investigation shows
that it is due to the way the lagrangian interpolation works (or fails to work).
Turning on Pawel’s spline with the same input gives:

Quantity Old Code New Code Difference
Rutherford cross section 47520 47460 0.1 %
Yield 1st excited state 4.3508 4.3876 0.8 %
Yield 2nd excited state 3.8543 × 10−4 3.8885 × 10−4 0.9%

The spline option is important for large target
recoil angles.

8.4 Using both IKIN with a single energy

In order to test the way the new code selects between IKIN = 0 and IKIN =
1, we can test with a single energy meshpoint, so the energy effect is neglected.
This is not a realistic calculation of the Coulomb excitation, but it allows us to
make a direct comparison.
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For the old code, we need to split the θ range into a low and high part. The
low part runs from 16.4◦ to the point where we need to switch from IKIN =
0 to IKIN = 1 and the high part runs from that point to 53.0◦. For the 0.775
MeV state this is at 40.72279◦.

So for the low part we use meshpoints at 4.37◦, 5.52◦, 6.45◦, 7.13◦, 7.54◦

and 7.70◦ with limits 16.4◦ to 40.72◦.

Quantity Old Code Old Code Old Code New Difference
(low) (high) (sum) Code

Rutherford 2053 3296 5349 5346 0.1 %
Yld 1st ex. state 8.8048 6.9624 15.7672 15.746 0.1 %

Yld 2nd ex. state × 103 5.8464 2.9647 8.8111 8.7996 0.1 %

It seems to work, but we need some more in-
tensive testing. . .

9 And the next problem. . . ?

At the Miniball workshop it was decided to use the new target chamber devel-
opped for transfer experiments also for Coulomb excitation experiments. This
target chamber has a barrel-shaped particle detector, so the angular coverage is
from about 16.4◦ to backward angles.

Suppose a 88Kr nucleus, with an initial energy of 193.6 MeV, is incident on
a 2.1 mg/cm2 12C target and a Coulomb excitation interaction occurs at the
middle of the target, so that the 12C nucleus is scattered to 60◦ in the labo-
ratory frame. The incoming 88Kr ion will lose about 51.5 MeV in the target
and have about 142.1 MeV when it interacts. For this energy, when the 12C
target nucleus scatters to 60◦, it will have an energy of about 13.60 MeV. At
this angle, it will have to traverse a thickness of 2.1 mg/cm2 of 12C. The energy
loss is then about 12.95 MeV, so the ion which hits the particle detector only
has an energy of about 0.65 MeV and will probably not be detected.

So these events will not contribute to the measured cross-section, but Gosia
will still include them in the integration.

Unfortunately, figuring out which points to include and which not turns out
to be non-trivial. I thought at first, that we could just set an energy threshold,
but it turns out that the loss of energy in the target is very important for these
low energies. So we would need to take the stopping power into account, and
this is not the same stopping power that Gosia already has, but the stopping
power for target recoils in the target.

Any thoughts about this?
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