Cross talk correction for AGATA detectors

•Motivation

From strategy to solution
Measuring Xtalk parameters
Results in values
Results in pictures

Bart Bruyneel — IKP Cologne At the 6th AGATA week, Padua Nov. 2007

Motivation

Cross talk correction is crucial for AGATA:

- Crosstalk is present in any segmented detector
- Creates strong energy shifts proportional to fold (origin: see last AGATA week)
- Tracking needs segment energies !

Results preview (S001):

- ALL folds aligned
- BONUS: improved resolution!

Cross talk correction: strategy

Step 1: setting up a practical model:

•Cross talk propagation is dominantly a linear process:

 \Rightarrow use matrices : $E_{\text{meas}} = \mathbf{B} \cdot E_{\text{true}}$

•We want a "practical approach": want to <u>measure</u> all the matrix elements involved

 \Rightarrow Remark true core energy is linear dependent on true segment energy

 \Rightarrow True core energy is not a parameter to solve for!

 \Rightarrow **B** is a 37x36 matrix.

•Practical limitation: Energies below treshold often returned as zero's

 \Rightarrow Take out (projection) segments that are not hit

example : event with hit segments 1,2 and 3. Model to set up is: $\begin{bmatrix} E_{core} \\ E_{seg1} \\ E_{seg2} \\ E_{seg3} \end{bmatrix}_{meas} = B \cdot \begin{bmatrix} E_{seg1} \\ E_{seg2} \\ E_{seg3} \end{bmatrix}_{true}$ Every possible hitpattern yields a different model matrix **B** !

Cross talk correction: strategy

Step 2: Identification of the matrix elements B_{ij}:

•Imagine first that there is no cross talk.

 \Rightarrow measured segment energy is true segment energy, measured core energy is segment sum

$$\Rightarrow \text{ in matrix form:} \qquad \begin{bmatrix} \underline{E}_{core} \\ \overline{E}_{seg1} \\ E_{seg2} \\ E_{seg3} \end{bmatrix}_{meas} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} E_{seg1} \\ E_{seg2} \\ E_{seg3} \end{bmatrix}_{true}$$

•In practice, segments are calibrated on singles. <u>Conservation of calibration</u> implies:

 \Rightarrow measured segment energies of 1 folds is true segment energy.

 \Rightarrow matrix form <u>including</u> cross talk:

$$\begin{bmatrix} E_{core} \\ E_{seg1} \\ E_{seg2} \\ E_{seg3} \end{bmatrix}_{meas} = \begin{bmatrix} 1 + \delta_{01}^{*} & 1 + \delta_{02}^{*} & 1 + \delta_{03}^{*} \\ 1 & \delta_{12}^{*} & \delta_{13}^{*} \\ \delta_{21}^{*} & 1 & \delta_{23}^{*} \\ \delta_{31}^{*} & \delta_{32}^{*} & 1 \end{bmatrix} \cdot \begin{bmatrix} E_{seg1} \\ E_{seg2} \\ E_{seg3} \end{bmatrix}_{true}$$

 \Rightarrow (Note: only 36x36 <u>effective</u> matrix elements δ_{ij}^* measurable, true crosstalk matrix is 37x37!)

Measuring the cross talk parameters

a) From singles:

 δ^*_{ij} = shift observed in segment j when only segment i is hit.

- + Fast collection of data (every single event yields 35 entries in the 35x36 matrices)
- + Simple analysis no gates required
- Needs special care digitizer settings not to suppress low energies
- Typical correction for digitizer overflow necessary (values < 0)

$$\mathbf{B} = \begin{pmatrix} 1 + \delta_{01}^{*} & 1 + \delta_{02}^{*} & 1 + \delta_{03}^{*} & \cdots \\ 1 & \delta_{12}^{*} & \delta_{13}^{*} & \cdots \\ \delta_{21}^{*} & 1 & \delta_{23}^{*} & \cdots \\ \delta_{31}^{*} & \delta_{32}^{*} & 1 & \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Cross talk correction: solution

Step 3: Inverting the model:

- Inverting a non-square matrix = <u>fitting</u>.
- Pseudo matrix inverses are not unique
- \Rightarrow guide choice of matrix by <u>properties of noise</u>
- \Rightarrow better description of noise = better result.
- Two models were compared: OLS and GLS

Differences between models:

OLS:

- \bullet Core and Seg all have same noise σ
- \Rightarrow low energy approximation
- \Rightarrow Simple (over-)estimated noise reduction:

fold	Core	Segsum	estimate Etrue
1	1	1.00	0.71
2	1	1.41	0.82
3	1	1.73	0.87
4	1	2.00	0.89
5	1	2.24	0.91
n	1	sqrt(n)	weighted avg

GLS:

- Core and Seg all have <u>realistic</u>, individual σ
- \Rightarrow For 1 channel: $\sigma^2(E) = \sigma^2_{elec.} + F \cdot E$
- \Rightarrow For whole detector (covariance matrix Σ):

$$\Sigma_{det}(E_1, E_2, ...) = \Sigma_{electronic} + \Sigma_{statistic}$$

$$\Sigma_{electronic} = \begin{pmatrix} \sigma_{core}^2 & 0 & 0 & \dots \\ 0 & \sigma_{segl}^2 & 0 & \dots \\ 0 & 0 & \sigma_{seg2}^2 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\Sigma_{statistic}(E_1, E_2, \dots) = F \cdot \begin{pmatrix} (E_1 + E_2 + \dots) & E_1 & E_2 & \dots \\ E_1 & E_1 & 0 & \dots \\ E_2 & 0 & E_2 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

OUTCOME (upto 1,3MEV) :

OLS performs only slightly worse than GLS

Results in values

<u>Note:</u> All fits performed with "tail left free" Due to "bow effects" (but only small effect)

Position [keV] of the 1332 keV line

fold	uncr. Seg	uncr. Core	OLS corr.	GLS corr.
1	1332.59	1332.47	1332.47	1332.48
2	1330.59	1332.47	1332.41	1332.42
3	1328.39	1332.44	1332.37	1332.36
4	1326.05	1332.44	1332.32	1332.29
5	1323.67	1332.41	1332.2	1332.21
6	1321.22	1332.35	1332.1	1332.14
7	1318.72	1332.24	1331.96	1332.04

Resolution [keV] of the 1332 keV line

fold	uncr. Seg	uncr. Core	OLS corr.	GLS corr.
1	1.99	2.49	1.97	1.91
2	2.5	2.46	2.12	2.06
3	3.06	2.43	2.11	2.14
4	3.63	2.44	2.07	2.19
5	4.07	2.41	2.21	2.22
6	4.38	2.35	2.3	2.23
7	4.69	2.22	2.39	2.34

Resolution [keV] of the low energy lines

Energy	fold	uncr. Seg	OLS corr.	GLS corr.
60keV	1	1.2	1.07	1.02
122keV	1	1.32	1.15	1.12
122keV	2	1.77	1.35	1.33
136keV	1	1.33	1.16	1.14
136keV	2	1.79	1.39	1.33

Comparison of resolution increase with theory

		C'L' agtime at a		
Energy	fold	theory	Ratio =	GLS estimate
60keV	1	0.825	0.85	Uncorr. Segsum
122keV	1	0.841	0.85	
122keV	2	0.73	0.75	Theory with
136keV	1	0.845	0.86	$\sigma_{core} = 0.64 \text{keV}$
136keV	2	0.73	0.74	$\sigma_{seg} = 0.47 \text{keV}$
1332keV	1	0.943	0.96	$F = 3.55 \ 10^{-4} \ \text{keV}$

Results in pictures

Results in pictures

Results in pictures

Conclusion / Summary

- A practical method to correct for cross talk effects in segmented detectors was presented
- The method has as nice additional feature to increase energy resolution (through fitting).
- Simple (OLS) and more complex (GLS) fitting procedures were included. Both perform equally well (in the energy range upto 1.3MeV).

EXPERT SLIDES - About the method: a) model

•Measured Energies E_{meas} relate linearly to true energies E_{true} •Core Energy is sum of Segment energies : dim $E_{true} = 36$

$$\mathbf{E}_{\text{meas}}(37) = \left[\mathbf{N} \cdot \mathbf{X} \cdot \mathbf{C}\right](37 \times 36) \cdot \mathbf{E}_{\text{true}}(36)$$

• X : Adds Xtalk : X (37 x 37) =
$$1+\Delta$$

• N : Calibration : (37 x 37)

 \Rightarrow Model matrix **B** (37 x 36) = **N**·**X**·**C** with 36x36 observable Xtalk parameters:

- not all Xtalk matrix elements measurable \Rightarrow effective matrix elements δ^*
- $\delta^*_{ii} = 0$ from calibration **N**

$$X = \begin{pmatrix} 0 & 1 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$
$$X = \begin{pmatrix} 1 + \delta_{00} & \delta_{01} & \delta_{02} & \cdots \\ \delta_{10} & 1 + \delta_{11} & \delta_{12} & \cdots \\ \delta_{20} & \delta_{21} & 1 + \delta_{22} \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
$$N = \begin{pmatrix} n_0 & 0 & 0 & \cdots \\ 0 & n_1 & 0 & \cdots \\ 0 & 0 & n_2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 $\frac{1}{1} \quad \frac{1}{0} \quad \cdots$

$$\mathbf{B} = \begin{pmatrix} 1 + \delta_{01}^{*} & 1 + \delta_{02}^{*} & 1 + \delta_{03}^{*} & \cdots \\ 1 & \delta_{12}^{*} & \delta_{13}^{*} & \cdots \\ \delta_{21}^{*} & 1 & \delta_{23}^{*} & \cdots \\ \delta_{31}^{*} & \delta_{32}^{*} & 1 & \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

EXPERT SLIDES - About the method: b) solution

Problems "Inverting" B:

• **B** not square - more measured values than unknown

 $\Rightarrow Fitting : \mathbf{E}_{true} = (\mathbf{B}^T \mathbf{B})^{-1} \cdot \mathbf{B}^T \cdot \mathbf{E}_{meas}$

• Usually E_{meas} < treshold not completely measured!

 $\Rightarrow \mathbf{B}_{\mathbf{n}} (\mathbf{n+1} \ge \mathbf{n}) = \mathbf{P}_{\mathbf{n}} (\mathbf{n+1} \ge 37) \cdot \mathbf{N} \cdot \mathbf{X} \cdot \mathbf{C} \cdot \mathbf{P}_{\mathbf{n}}^{*} (36 \ge n)$

Example : suppose 1 fold without cross talk:

with \mathbf{P}_{n} , \mathbf{P}_{n}^{*} projection on fold n

 $\mathbf{B}_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \implies E_{OLS} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} E_{core} \\ E_{seg} \end{pmatrix}$

Better : including knowledge of noise : Generalized Least Square Fitting (GLS)

$$\Rightarrow \text{Fitting} : \mathbf{E}_{\text{true}} = (\mathbf{B}^{\mathrm{T}} \ \boldsymbol{\Sigma}^{-1} \ \mathbf{B})^{-1} \cdot \mathbf{B}^{\mathrm{T}} \cdot \boldsymbol{\Sigma}^{-1} \cdot \mathbf{E}_{\text{meas}}$$
$$\Sigma = \begin{pmatrix} \sigma_{core}^{2} & 0\\ 0 & \sigma_{seg}^{2} \end{pmatrix} \Rightarrow E_{OLS} = \frac{\sigma_{core}^{2} \sigma_{seg}^{2}}{\sigma_{core}^{2} + \sigma_{seg}^{2}} \cdot \left(\frac{1}{\sigma_{core}^{2}} \ \frac{1}{\sigma_{seg}^{2}}\right) \cdot \left(\frac{E_{core}}{E_{seg}}\right)$$

with Σ covariance matrix of noise weighted average !

For segmented detectors $\Sigma =$

$$\Sigma(E_{1}, E_{2}, ...) = \begin{pmatrix} \sigma_{core}^{2} + F \cdot (E_{1} + E_{2} + ...) & F \cdot E_{1} & F \cdot E_{2} & ... \\ F \cdot E_{1} & \sigma_{segl}^{2} + F \cdot E_{1} & 0 & ... \\ F \cdot E_{2} & 0 & \sigma_{segl}^{2} + F \cdot E_{2} & ... \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

with F = Fano factor x energy/e-h pair

DOUBLE WIN!!!

•Xtalk corrected

•Resolution optimized