Automated optimization of detector simulation to fit SOO2 scan data

•About the procedure

•About parameters and their sensitivity

•Measuring Xtalk parameters

•First results in pictures

•To do list and Suggestions for data taking

Bart Bruyneel and Benedikt Birkenbach — IKP Cologne At the 6th AGATA week, Padua Nov. 2007

Procedure

Parameters in detail : a) coordinates & offsets

Intermezzo : Impurities by Canberra

Parameters in detail : b) Space Charge

Space Charge [10¹⁰/cm³] •cylinder symmetry •Linear in r and z : \Rightarrow 4 point fit

Optimization clearly shows when detector is no longer depleted

S002 parameters by Canberra: Top = 0,51 - Queue = 1,80 But Top = front or back ? Missing info (only for this detector) Top = back assumption most likely!!!

Zoom:

Rather insensitive in certain regions. Region > 0 is not physical Region < -2 is not likely

Parameters in detail : c) Mobilities

$$v_l = \frac{\mu_0 E}{(1 + (\frac{E}{E_0})^{\beta})^{\frac{1}{\beta}}} - \mu_n E$$

(negligible)

5.4.10-5

0,496

0.459

0,0296

0,0294

Orientation of lattice very well defined:

Parameters in detail : c) Mobilities

$$v_{l} = \frac{\mu_{0}E}{(1 + (\frac{E}{E_{0}})^{3})^{\frac{1}{\beta}}} - \mu_{n}E$$

$$v_{l} = \frac{\mu_{0}E}{(1 + (\frac{E}{E_{0}})^{3})^{\frac{1}{\beta}}} - \mu_{n}E$$
Reference (12f. MINIBALL)
S002 Prelim.
(100)
S002 Prelim.
(111)
(111)
S002 Prelim.
(111)
(111)
S002 Prelim.
(111)
(111)
S002 Prelim.
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)
(111)

Parameters in detail : c) e⁻ mobility along <100>

All well defined minima, Same for other parameters...

Typical effect

Line Scan 17

Line 17 is the WORST case...!!!

Status: Promissing results

Azim. scans	#evts	avg. FOM	
20mm	97	4.74E-02	
24mm	262	4.08E-02	<next< td=""></next<>
27mm	144	4.55E-02	
31mm	204	5.37E-02	
Line scans			
1	119	8.28E-02	
2	84	7.07E-02	
3	44	9.73E-02	
4	54	6.55E-02	
5	75	7.86E-02	
6	57	6.18E-02	
7	89	6.78E-02	
8	78	5.20E-02	
9	46	6.18E-02	
10	48	5.67E-02	
11	11	excluded	
12	64	5.39E-02	
13	61	7.47E-02	
14	39	6.62E-02	
15	57	6.16E-02	
16	34	3.86E-02	
17	43	8.78E-02	<shown< td=""></shown<>

24 mm azimutal scan / left segment

z value of interaction

24 mm azimutal scan / right segment

24 mm azimutal scan / upper segment

24 mm azimutal scan / lower segment

24 mm azimutal scan / risetime segment (10 to 90 %)

²⁴ mm azimutal scan / risetime core (10 to 90 %)

24 mm azimutal scan / risetime core (10 to 80 %)

Parameters to improve on : a) Response function

No response function available preamp + digitizer
Best measurable (in future) using pulser input
First estimate from events hitting <u>near segmentation line</u>:

Illustration using Linescan 3:

Clue is symmetry effect :

Image charge difference $\mathbf{q}_1 - \mathbf{q}_2$ is allways 0 ...

.... till holes are collected: difference is step function !!!

Method allows also to investigate cross talk

- \Rightarrow Needs precision (²⁴¹Am-source) data
- \Rightarrow Effect of order >1% expected!!!
- \Rightarrow 4x36 parameters to determine

Parameters to improve on : b) segmentation line

"Weighting potential" of segmentation lines:

Needs complete surface scans! Also in depth

Advantages of ²⁴¹Am

Test : Segment sum = Core ?

<u>Residues Core – Segsum can be due to</u> Time misalignment, Xtalk, Segmentation line, differences in response function...

Comparison with what one obtains with Am source:

²⁴¹Am advantages neglected!

- •High statistics high quality very fast
- Precise position information
- Most parameters best accessible with ²⁴¹Am
- Only feasible with ²⁴¹Am:
 - crosstalk
 - influence segmentation line

Except for hole mobility par. Preference goes to ^{241}Am

Summary

First order of agreement simulation – experiment is realized

Well defined minima were observed

Next order corrections only accessible with Am source data

The end