Status of PSA investigation and optimization AGATA Week 2015 Valencia

Lars Lewandowski, Benedikt Birkenbach, Peter Reiter

IKP Cologne

22.09.2015

Outline

- PSA performance characterization
- Clustering
- High statistic grid points
- Investigation of grid search
- PSA optimization
- Input parameters
- Detector properties
- Proper setup of algorithm
- Exemplarily shown for optimization of transfer function

PSA characterization

- Distribution of hits
- If unexpected behavior: Segment/Detector/general?
- Dependence on interaction position and energy

- Clustering!

PSA characterization

- Distribution of hits
- If unexpected PSA results: Segment/Detector/general?
- Dependence on interaction position and energy

- High Statistic Grid Points (HSGP)!

PSA characterization

> Detector 0 (A004), $z=10-12 \mathrm{~mm}$

- Distribution of hits
- If unexpected PSA results: Segment/Detector/general?
- Dependence on interaction position and energy

$\mathrm{z}=10-12 \mathrm{~mm}$

B

C

PSA characterization

- Distribution of hits
- If unexpected PSA results: Segment/Detector/general?
- Dependence on interaction position and energy

■ Problems with: Low energies, front of the detector, segment borders, edge of detector

Visualization of Grid Search

- Consider $\chi^{2}(\vec{r})$ of ONE event
- Local χ^{2} minima?

■ $\mathrm{E}=257 \mathrm{keV}$, Segment $=22, \mathrm{x}=-32.25 \mathrm{~mm}, \mathrm{y}=-6.25 \mathrm{~mm}$, $\mathrm{z}=59.25 \mathrm{~mm}$

$z=54-56 \mathrm{~mm}$

Visualization of Grid Search

- Consider $\chi^{2}(\vec{r})$ of ONE event
- Local χ^{2} minima?

■ $\mathrm{E}=257 \mathrm{keV}$, Segment $=22, \mathrm{x}=-32.25 \mathrm{~mm}, \mathrm{y}=-6.25 \mathrm{~mm}$, $\mathrm{z}=59.25 \mathrm{~mm}$

$\mathrm{z}=56-58 \mathrm{~mm}$

Visualization of Grid Search

- Consider $\chi^{2}(\vec{r})$ of ONE event
- Local χ^{2} minima?

■ $\mathrm{E}=257 \mathrm{keV}$, Segment $=22, \mathrm{x}=-32.25 \mathrm{~mm}, \mathrm{y}=-6.25 \mathrm{~mm}$, $\mathrm{z}=59.25 \mathrm{~mm}$

$\mathrm{z}=58-60 \mathrm{~mm}$

Visualization of Grid Search

- Consider $\chi^{2}(\vec{r})$ of ONE event
- Local χ^{2} minima?

■ $\mathrm{E}=257 \mathrm{keV}$, Segment $=22, \mathrm{x}=-32.25 \mathrm{~mm}, \mathrm{y}=-6.25 \mathrm{~mm}$, $\mathrm{z}=59.25 \mathrm{~mm}$

Visualization of Grid Search

- Consider $\chi^{2}(\vec{r})$ of ONE event
- Local χ^{2} minima?

■ $\mathrm{E}=257 \mathrm{keV}$, Segment $=22, \mathrm{x}=-32.25 \mathrm{~mm}, \mathrm{y}=-6.25 \mathrm{~mm}$, $\mathrm{z}=59.25 \mathrm{~mm}$

$\mathrm{z}=62-64 \mathrm{~mm}$

Visualization of Grid Search

- Consider $\chi^{2}(\vec{r})$ of ONE event
- Local χ^{2} minima?

■ $\mathrm{E}=257 \mathrm{keV}$, Segment $=22, \mathrm{x}=-32.25 \mathrm{~mm}, \mathrm{y}=-6.25 \mathrm{~mm}$, $\mathrm{z}=59.25 \mathrm{~mm}$

$\mathrm{z}=64-66 \mathrm{~mm}$

Visualization of Grid Search

- Consider $\chi^{2}(\vec{r})$ of ONE event
- Local χ^{2} minima?

■ $\mathrm{E}=257 \mathrm{keV}$, Segment $=22, \mathrm{x}=-32.25 \mathrm{~mm}, \mathrm{y}=-6.25 \mathrm{~mm}$, $\mathrm{z}=59.25 \mathrm{~mm}$

$\mathrm{z}=66-68 \mathrm{~mm}$

Visualization of Grid Search

- Consider $\chi^{2}(\vec{r})$ of ONE event
- Local χ^{2} minima?

■ $\mathrm{E}=257 \mathrm{keV}$, Segment $=22, \mathrm{x}=-32.25 \mathrm{~mm}, \mathrm{y}=-6.25 \mathrm{~mm}$, $\mathrm{z}=59.25 \mathrm{~mm}$

$\mathrm{z}=68-70 \mathrm{~mm}$

Visualization of Grid Search

- Consider $\chi^{2}(\vec{r})$ of ONE event
- Local χ^{2} minima?

■ $\mathrm{E}=257 \mathrm{keV}$, Segment $=22, \mathrm{x}=-32.25 \mathrm{~mm}, \mathrm{y}=-6.25 \mathrm{~mm}$, $\mathrm{z}=59.25 \mathrm{~mm}$

Visualization of Grid Search

- Radial dependence of $\chi^{2}(\vec{r})(\pm 10 \mathrm{~mm}$ from minimum $)$
- Radial position seems reliable. Angular resolution difficult
- Depth of minimum $=\chi_{\text {min }}^{2} / \chi_{\text {max }}^{2} \Rightarrow$ reliability of PSA result

Visualization of Grid Search

- Energy dependence of depth of minimum (10k events)
- Small energies problematic

PSA optimization

Detector and electronics properties:

- Transfer function of preamplifier and digitizer (rise times)
- Preamplifier decay times for every segment and core (Scaling of database)
- Differential Crosstalk
- Space Charge (impurity concentrations)

PSA optimization

Setup of the algorithm:

- Distance metric $\chi^{2}=\sum_{t}|\operatorname{Simulation}(t)-\operatorname{Measurement}(t)|^{p}$
- Time alignment:
- Constant shift for every segment/core
- Dynamic Shift during PSA on event by event basis

■ Stopping criteria (number of loops, min/max shift)
■ Number of ticks included (only \approx rise time)
■ Metric $\chi^{2}=\sum_{t}\left|\operatorname{Simulation}(t)-\operatorname{Measurement}\left(t+t_{\text {shift }}\right)\right|^{p}$

How to chose parameters

No information on real interaction position

- χ^{2}

- Comparison with expected hit distribution (known for source runs statistical fluctuation)
- Clustering/Correlation (Covariance)
- High statistic grid points (Ratio)

How to chose parameters

No information on real interaction position

- χ^{2}
- Comparison with expected hit distribution (known for source runs statistical fluctuation)
- Clustering/Correlation (Covariance)

- High statistic grid points (Ratio)

How to chose parameters

No information on real interaction position

- χ^{2}
- Comparison with expected hit distribution (known for source runs statistical fluctuation)

■ Clustering/Correlation (Covariance)
■ High statistic grid points (Ratio of hits inside HSGP compared to rest)

Example of optimization - Transfer function

- Transfer function of preamplifier and digitizer
- 'Effective' τ
- Performed for every 540 segments (and 15 cores)

-Minima correspond to optimal tau value -Shown for segment 7 of detector 13

Impact on hit distribution

- Results with different optimization methods

Detector $1, \mathrm{z}=0-2 \mathrm{~mm}$

Transfer Function

- Minima positions are similar, but do not coincide 100%
- Differences of optimal τ values derived via different determination methods
diff cov-chi

Transfer Function

- $\tau_{\text {chi }}$ is systematically bigger than $\tau_{\text {cov }}$ and $\tau_{\text {ratio }}$
- $\tau_{\text {cov }}$ and $\tau_{\text {ratio }}$ coincide very well
- $\frac{\tau_{\text {cov }}+\tau_{\text {ratio }}}{2}$ is used for optimizing all 555 channels

Optimization

- Before (left) and after (right) complete Optimization
- Exemplarily for det $1, \mathrm{z}=10-12 \mathrm{~mm}$. All energies

Summary and Outlook

Summary

- Characterization and optimization of PSA performance
- Clustering and non physical allocation of hits could be reduced...
- ...but not removed

Outlook:

- Reiteration of optimization (input parameters are not independent)
- Measure transfer function of digitizer and preamplifier
- Use scanning table data / collimated source measurements
- Impact of PSA optimization on tracking performance

Thank you for your attention

Transfer function

- Distribution of found τ values (one for each segment)
cov dist

ratio dist

chi dist

PSA characterization

- Distribution of hits
- Distribution of final $\chi^{2}(\vec{r}, E)$ ('Figure of Merit')
- If unexpected PSA results: Segment/Detector/general?
- Dependence on interaction position and energy

- Non homogeneous!

Comparison of hit distribution and mean χ^{2}

Segment and detector performance

Distance of High Statistic Grid Points (HSGP)

■ Investigate relative position of HSGPs

- Same or similar spot in all detectors?

Distance of High Statistic Grid Points

■ Search for HSGP segment wise
■ HSGP positions at characteristic spots
■ General problem that exists for every detector

The AGATA Data Library

The AGATA Data Library (ADL) contains the signals for every possible interaction point

- Consider impurity concentration of the crystal
- Not constant over whole crystal
- Assumptions: cylindrical symmetry, no radial change, linear gradient from front to back
- Two dimensional optimization problem: Iterative method
- Impurity concentration in the order of $10^{10} / \mathrm{cm}^{3}$

Optimization of the Impurity Concentration

- Use average χ^{2} of best fit of all interactions of source run as minimization variable
- Imp. concentration is given relative to start value provided by manufacturer
- Imp. Concentrations for back and front not independent and cannot be evaluated separately
- Iterative method uses output of previous step as input

Optimization of the Impurity Concentration

Results of the optimization

Detector $14, \mathrm{z}=28 \mathrm{~mm}$, before optimization

Detector $14, z=28 \mathrm{~mm}$, after optimization

Comparison of Measurement and Simulation

- Amplitudes of measurement and simulation do not coincide
- Systematic deviation

Calibration of calculated signals

- Amplitude of simulation depends on decay time τ of preamplifier

Energy shift of simulation

Variation of τ for every preamplifier: 555 parameters!

$$
\tau_{\text {new }}=\tau(1-m), m=\text { mean of distribution }
$$

Impact on PSA

- Improvement of HSGP at highlighted spots

Maximum number of loops

- Vary allowed number of maximum loops for TA after PSA
- Algorithm converges \checkmark

Minimum Shift

- If minimal time shift dt is reached, the algorithm stops
- (Obviously) small dt are preferred, but change is very small (std value= $=1.5 \mathrm{~ns}$)

Local time alignment

- For a fast algorithm the time alignment assumes a convex function
- The next time shift is only performed if χ^{2} improved in the previous step
- If $\chi^{2}[n]$ is not a convex function only a local minimum will be found
χ^{2} of time shift n

$$
\chi^{2}[n]=\sum_{i=0}^{21}\left(A^{m}[i+n]-A^{s}[i]\right)^{2}
$$

Global time alignment

- Therefore a global time alignment was implemented that evaluates the χ^{2} for every time shift and then searches the minimum
- Good news: The global time alignment gives nearly the same results as the fast algorithm $\Rightarrow \chi^{2}[n]$ behaves like a convex function

Time alignment after PSA

- TA after PSA uses χ^{2} like parameter
- Reminder: χ^{2} in PSA is determined with set distance metric

Figure of Merit

$$
\chi^{2}=\sum_{t_{i}, j}\left|A_{j}^{m}\left[t_{i}\right]-A_{j}^{s}\left[t_{i}\right]\right|^{p}
$$

Measured A^{m} and simulated signal A^{s} of segment id j and time t_{i}
■ In the time alignment only the sqare of the differences is used
\Rightarrow Room for improvement?

Distance metric in the time alignment

- The χ^{2} in the TA is now derived in the same way as in the PSA
- The distance metric parameter p is varied
- Compared to PSA significantly higher values seem to be favored

Impact of distance metric on hit distributions

- Detector 1, $\mathrm{z}=6 \mathrm{~mm}$
- The time alignment seems to favor higher values for p
- Even beyond Euclidian metric

Preprocessing time alignment

- Before the first PSA and time alignment afterwards, a constant time shift is applied to each core (and therefore to each segment)
- Values used from dissertation Birkenbach, choosing the values in such a way that the PSA TA has to shift minimal
- Shifts of PSA with and without preprocessing TA are shown for one
- Axis in ns + arbitrary offset

Preprocessing time alignment

With (left) and without (right) preprocessing time alignment

