Status of PSA investigation and optimization AGATA Week 2015 Valencia

Lars Lewandowski, Benedikt Birkenbach, Peter Reiter

IKP Cologne

22.09.2015

Outline

- PSA performance characterization
 - Clustering
 - High statistic grid points
 - Investigation of grid search
- PSA optimization
 - Input parameters
 - Detector properties
 - Proper setup of algorithm
 - Exemplarily shown for optimization of transfer function

- Distribution of hits
- If unexpected behavior: Segment/Detector/general?
- Dependence on interaction position and energy

Clustering!

- Distribution of hits
- If unexpected PSA results: Segment/Detector/general?
- Dependence on interaction position and energy

High Statistic Grid Points (HSGP)!

- Distribution of hits
- If unexpected PSA results: Segment/Detector/general?
- Dependence on interaction position and energy

Detector 0 (A004), z=10-12 mm

$z = 10-12 \, mm$

- Distribution of hits
- If unexpected PSA results: Segment/Detector/general?
- Dependence on interaction position and energy

 Problems with: Low energies, front of the detector, segment borders, edge of detector

- Consider $\chi^2(\vec{r})$ of ONE event
- Local χ^2 minima?
- E = 257 keV, Segment=22, x=-32.25 mm, y=-6.25 mm, z=59.25 mm

- Consider $\chi^2(\vec{r})$ of ONE event
- Local χ^2 minima?
- E = 257 keV, Segment=22, x=-32.25 mm, y=-6.25 mm, z=59.25 mm

- Consider $\chi^2(\vec{r})$ of ONE event
- Local χ^2 minima?
- E = 257 keV, Segment=22, x=-32.25 mm, y=-6.25 mm, z=59.25 mm

- Consider $\chi^2(\vec{r})$ of ONE event
- Local χ^2 minima?
- E = 257 keV, Segment=22, x=-32.25 mm, y=-6.25 mm, z=59.25 mm

- Consider $\chi^2(\vec{r})$ of ONE event
- Local χ^2 minima?
- E = 257 keV, Segment=22, x=-32.25 mm, y=-6.25 mm, z=59.25 mm

- Consider $\chi^2(\vec{r})$ of ONE event
- Local χ^2 minima?
- E = 257 keV, Segment=22, x=-32.25 mm, y=-6.25 mm, z=59.25 mm

- Consider $\chi^2(\vec{r})$ of ONE event
- Local χ^2 minima?
- E = 257 keV, Segment=22, x=-32.25 mm, y=-6.25 mm, z=59.25 mm

- Consider $\chi^2(\vec{r})$ of ONE event
- Local χ^2 minima?
- E = 257 keV, Segment=22, x=-32.25 mm, y=-6.25 mm, z=59.25 mm

- Consider $\chi^2(\vec{r})$ of ONE event
- Local χ^2 minima?
- E = 257 keV, Segment=22, x=-32.25 mm, y=-6.25 mm, z=59.25 mm

- Radial dependence of $\chi^2(\vec{r})$ (\pm 10 mm from minimum)
- Radial position seems reliable. Angular resolution difficult
- \blacksquare Depth of minimum = $\chi^2_{\it min}/\chi^2_{\it max}$ \Rightarrow reliability of PSA result

- Energy dependence of depth of minimum (10k events)
- Small energies problematic

PSA optimization

Detector and electronics properties:

- Transfer function of preamplifier and digitizer (rise times)
- Preamplifier decay times for every segment and core (Scaling of database)
- Differential Crosstalk
- Space Charge (impurity concentrations)

PSA optimization

Setup of the algorithm:

- Distance metric $\chi^2 = \sum_t |\text{Simulation}(t) \text{Measurement}(t)|^p$
- Time alignment:
 - Constant shift for every segment/core
 - Dynamic Shift during PSA on event by event basis
 - Stopping criteria (number of loops, min/max shift)
 - Number of ticks included (only \approx rise time)
 - lacktriangle Metric $\chi^2 = \sum_t |\mathsf{Simulation}(t)|$ Measurement $(t + t_{\mathrm{shift}})|^p$

How to chose parameters

No information on real interaction position

- Comparison with expected hit distribution (known for source runs statistical fluctuation)
 - Clustering/Correlation (Covariance)
 - High statistic grid points (Ratio)

How to chose parameters

No information on real interaction position

- Comparison with expected hit distribution (known for source runs statistical fluctuation)
 - **Clustering/Correlation (Covariance)**

High statistic grid points (Ratio)

How to chose parameters

No information on real interaction position

- \mathbf{I} χ^2
- Comparison with expected hit distribution (known for source runs statistical fluctuation)
 - Clustering/Correlation (Covariance)
 - High statistic grid points (Ratio of hits inside HSGP compared to rest)

Example of optimization - Transfer function

- Transfer function of preamplifier and digitizer
- 'Effective' τ
- Performed for every 540 segments (and 15 cores)

-Minima correspond to optimal tau value

-Shown for segment 7 of detector 13

Impact on hit distribution

■ Results with different optimization methods

Transfer Function

- Minima positions are similar, but do not coincide 100%
- lacktriangle Differences of optimal au values derived via different determination methods

Transfer Function

- lacktriangledown au_{chi} is systematically bigger than au_{cov} and au_{ratio}
- lacktriangledown au_{cov} and au_{ratio} coincide very well
- $extbf{ extbf{ iny }} rac{ au_{cov} + au_{ratio}}{2}$ is used for optimizing all 555 channels

Optimization

- Before (left) and after (right) **complete** Optimization
- Exemplarily for det 1, z=10-12 mm. All energies

Summary and Outlook

Summary

- Characterization and optimization of PSA performance
- Clustering and non physical allocation of hits could be reduced...
- ...but not removed

Outlook:

- Reiteration of optimization (input parameters are not independent)
- Measure transfer function of digitizer and preamplifier
- Use scanning table data / collimated source measurements
- Impact of PSA optimization on tracking performance

Thank you for your attention

Transfer function

■ Distribution of found τ values (one for each segment)

- Distribution of hits
- Distribution of final $\chi^2(\vec{r}, E)$ ('Figure of Merit')
- If unexpected PSA results: Segment/Detector/general?
- Dependence on interaction position and energy

■ Non homogeneous!

Comparison of hit distribution and mean χ^2

Segment and detector performance

Distance of High Statistic Grid Points (HSGP)

- Investigate relative position of HSGPs
- Same or similar spot in all detectors?

Distance of High Statistic Grid Points

- Search for HSGP segment wise
- HSGP positions at characteristic spots
- General problem that exists for every detector

The AGATA Data Library

The AGATA Data Library (ADL) contains the signals for every possible interaction point

- Consider impurity concentration of the crystal
- Not constant over whole crystal
- Assumptions: cylindrical symmetry, no radial change, linear gradient from front to back
- Two dimensional optimization problem: Iterative method
- Impurity concentration in the order of 10¹⁰/cm³

Optimization of the Impurity Concentration

- Use average \(\chi^2\) of best fit of all interactions of source run as minimization variable
- Imp. concentration is given relative to start value provided by manufacturer

- Imp. Concentrations for back and front not independent and cannot be evaluated separately
- Iterative method uses output of previous step as input

Optimization of the Impurity Concentration

Results of the optimization

Comparison of Measurement and Simulation

- Amplitudes of measurement and simulation do not coincide
- Systematic deviation

Calibration of calculated signals

 \blacksquare Amplitude of simulation depends on decay time τ of preamplifier

Energy shift of simulation

Variation of τ for every preamplifier: 555 parameters!

$$\tau_{\text{new}} = \tau (1 - m), m = \text{mean of distribution}$$

Impact on PSA

■ Improvement of HSGP at highlighted spots

Maximum number of loops

- Vary allowed number of maximum loops for TA after PSA
- Algorithm converges ✓

Minimum Shift

- If minimal time shift dt is reached, the algorithm stops
- (Obviously) small dt are preferred, but change is very small (std value=1.5 ns)

Local time alignment

- For a fast algorithm the time alignment assumes a *convex* function
- The next time shift is only performed if χ^2 improved in the previous step
- If $\chi^2[n]$ is not a convex function only a local minimum will be found

χ^2 of time shift n

$$\chi^{2}[n] = \sum_{i=0}^{21} (A^{m}[i+n] - A^{s}[i])^{2}$$

Global time alignment

- \blacksquare Therefore a global time alignment was implemented that evaluates the χ^2 for every time shift and then searches the minimum
- Good news: The global time alignment gives nearly the same results as the fast algorithm $\Rightarrow \chi^2[n]$ behaves like a convex function

Time alignment after PSA

- TA after PSA uses χ^2 like parameter
- Reminder: χ^2 in PSA is determined with set distance metric

Figure of Merit

$$\chi^{2} = \sum_{t_{i},j} |A_{j}^{m}[t_{i}] - A_{j}^{s}[t_{i}]|^{p}$$

Measured A^m and simulated signal A^s of segment id j and time t_i

■ In the time alignment only the sqare of the differences is used ⇒ Room for improvement?

Distance metric in the time alignment

- \blacksquare The χ^2 in the TA is now derived in the same way as in the PSA
- The distance metric parameter p is varied
- Compared to PSA significantly higher values seem to be favored

Impact of distance metric on hit distributions

- Detector 1, z=6 mm
- The time alignment seems to favor higher values for p
- Even beyond Euclidian metric

Preprocessing time alignment

- Before the first PSA and time alignment afterwards, a constant time shift is applied to each core (and therefore to each segment)
- Values used from dissertation Birkenbach, choosing the values in such a way that the PSA TA has to shift minimal
- Shifts of PSA with and without preprocessing TA are shown for one
- Axis in ns + arbitrary offset

Preprocessing time alignment

With (left) and without (right) preprocessing time alignment

