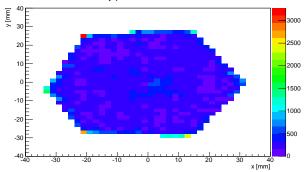
PSA Performance Analysis and Optimization AGATA Week Madrid 2014

Lars Lewandowski, (Benedikt Birkenbach, Bart Bruyneel)

IKP Cologne

23. Januar 2014

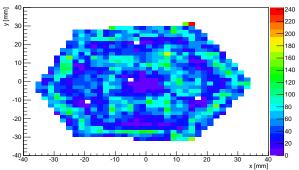
イロン 不同と 不同と 不同と


Э

Introduction

- PSA performance within specifications but: Systematic errors
- Non isotropic distribution of hits with an isotropic radiating single source
- PSA favors certain areas of the detector
- Structure of Segments visible
- Improve and optimize PSA parameters

向下 イヨト イヨト


Eu-152 Measurement

x-y plot for z = 0 mm

• Certain grid points at the edge of the detector have way more hits than expected by statistical fluctuation

Eu-152 Measurement

x-y plot for z = 10 mm

• One can see the clustering of hits and then structure of the segments although the interaction probability is the same within the crystal

Optimization method

Parameters to optimize:

- Variables in the Figure of Merit ('Distance Metric')
- Preamplifier Response function
- Differential Crosstalk

Methods and observables

- Doppler correction and peak width as measure of PSA performance
- Isotropy of distribution of hits
- Correlation of neighbouring grid points (\Rightarrow Clustering)

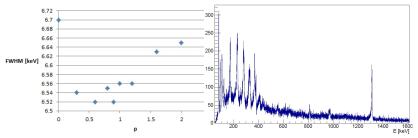
イロト イポト イヨト イヨト

Results using Doppler corrected Peaks

Used Data: LNL 11.22 with $^{136}\rm Xe$ beam gated on the ejectile mostly using the 2^+ from $^{136}\rm Xe$ (credits to Benedikt Birkenbach and Andreas Vogt)

• The interaction point is determined by calculating the Figure of Merit for each set of simulated traces and the measured trace. It is defined as:

Definition

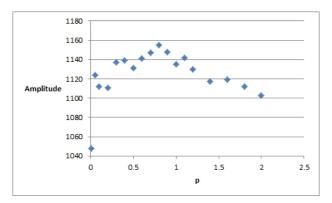

Figure of Merit =
$$\sum_{Segments \ j \ Timesteps \ t_i} \sum_{v_{i,j} - v_{i,j}^s | p}$$

Vary p > 0, $p \in R$

One would expect best results for p = 2 if the difference $|v_{i,j}^m - v_{i,j}^s|$ behaves gaussian.

Results using Doppler corrected Peaks

Variation of the exponent



- One can see a behaviour showing a minimum
- But value changes significantly when changing fit parameters only slightly
- Low statistics lead to high errors of the corresponding fit 0.2 keV

Lars Lewandowski, (Benedikt Birkenbach, Bart Bruyneel)

Results using Doppler corrected Peaks

Therefore the amplitude is considered when choosing a rougher binning to get a value independent of fit parameters:

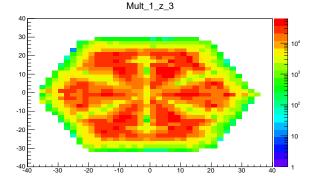
The behaviour seems to be somewhat more consistent.

Lars Lewandowski, (Benedikt Birkenbach, Bart Bruyneel) PSA Performance Analysis and Optimization

Additional Methods

The Doppler correction method cannot detect slight variations in the PSA performance. Low statistics in the gated spectra is a problem aswell.

 \Rightarrow more tools are needed


Isotropy of hit distribution and clustering of events

- Single isotropic radiating source
- Quantify how homogenious the distribution of hit is
- Are neighbouring grid points correlated?

Therefore two new values are introduced:

・ 同 ト ・ ヨ ト ・ ヨ ト

イロト イヨト イヨト イヨト

Analyze xy-Plots for different z for every detector

Analysis

- The bin content of each bin of a xy-plot for a certain depth z is read out
- The mean bin content is evalued by $Mean = \sum_{i,j}^{N} BinContent_{i,j} \cdot \frac{1}{N}$
- Where N is the number of bins

Error of single Measurement

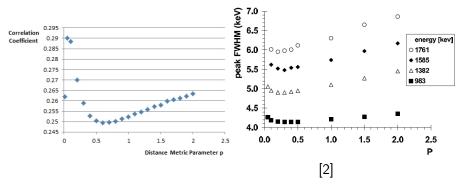
$$\textit{Error} = \sqrt{\frac{\sum_{i,j} (\textit{BinContent}_{i,j} - \textit{Mean})^2}{N}}$$

Which is not the Error of the Mean which would be $\frac{Error}{N-1}$ but the Error of the single Measurement of the Bin Content of one pixel. For comparison the Error has to be normalized by the Mean value.

Correlation Coefficient

• As this Error does not consider the xy-position of the bins, a Correlation Coefficient is defined as to describe the clustering of hits in the detector

Correlation Coefficient

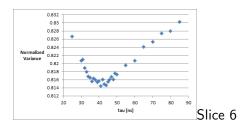

When *BC* is the Bin Content, $E(BC_{i,j})$ the Expectancy Value for the bin (i,j),the Covariance Cov is given by

$$Cov = E[(BC_{i,j} - E(BC_{i,j}))(BC_{i,j+1} - E(BC_{i,j+1}))]$$

As the assumed distribution is isotropic the Expectancy value for all bins is the same, namely the Mean. To get a comparable Correlation Coefficent one has to normalize the Covariance

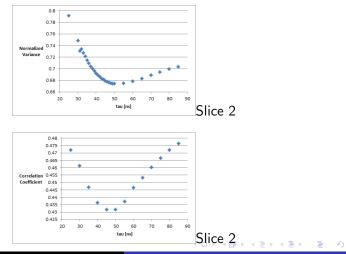
$$Corr.Coeff. = \frac{Cov}{\sigma_{i,j}\sigma_{i,j+1}} = \frac{Cov}{Error^2}$$

Distance Metric with the Correlation Coefficient



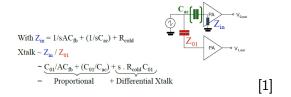
- Consistent behaviour with Doppler correction method
- more accurate

Response Function


Convolution of real signal and detector response

- Preamplifiers and digitizers smear out a step function
- One gets something like exponential saturation
- For Correction one needs to get the derivative \Rightarrow exponential decay parametrized by decay parameter τ for each slice

Response Function

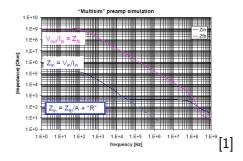

Previous standard value: $35 \, \mu s$

Lars Lewandowski, (Benedikt Birkenbach, Bart Bruyneel)

PSA Performance Analysis and Optimization

Differential Crosstalk

Implementation

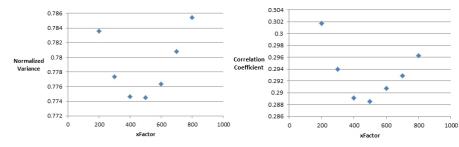

Average Crosstalk(Segment i) =
$$\sum_{j=1}^{N} \text{Crosstalk}_{i,j} \frac{1}{N}$$

Differential $Crosstalk_{i,j} = (Prop. Crosstalk_{i,j} - Avg Crosstalk_i)R'$

イロン イヨン イヨン イヨン

æ

Differential Crosstalk



Average Crosstalk is an estimate for core to segment Crosstalk

- - E - I

 Deviations from that come from segment to segment Crosstalk (mostly neighbouring segments)

Differential Crosstalk

< 3 b

- Variation of the Resistance R' = xFactor (a.u.)
- Both parameters give consistent results

Outlook

- Several parameters were investigated and optimized
- Clustering still exists. Exclude investigated parameters
- Analyze data of measurements with a collimated source
- Use the created tools to investigate further parameters of the producers

向下 イヨト イヨト

• Investigate the ADL bases?

Bibliography I

- [1] Bart Bruyneel CEA Saclay France. Electronics. EGAN School, Liverpool, 2011.
- Francesco Recchia. In-beam test and imaging capabilities of the agata prototype detector. Universita degli studi Padova, 2008.

イロン イヨン イヨン イヨン

æ