
Miniball/IDS Autofill System Internals

Nigel Warr

20th January 2014.

Contents

1 Introduction 5
1.1 The hardware . 5

1.1.1 The LN2 sensors . 6
1.1.2 The bias shutdown . 6
1.1.3 The valve relays . 6
1.1.4 The control port (ISA card only) 7
1.1.5 USB configuration (USB only) 7
1.1.6 The PT100 readout (ISA only) 7
1.1.7 The PT100 readout (USB only) 7

1.2 The software . 7
1.3 Naming conventions . 8

2 The fill program 9
2.1 The file fill.c . 9

2.1.1 The main routine . 9
2.1.2 The treat device function 10
2.1.3 The purge function . 12
2.1.4 The fill function . 12
2.1.5 The vent function . 14
2.1.6 The wait for dry function 14
2.1.7 The signal handler function 14
2.1.8 The exit handler function 14
2.1.9 The add to log function 15
2.1.10 The filling states . 15
2.1.11 The program states . 16
2.1.12 The fill types . 17

2.2 The file disabledlist.c . 17
2.2.1 The read disabled list function 17
2.2.2 The analyse disabled list function 17

2.3 The files hardware isa.c and hardware usb.c 18
2.3.1 The init function . 18
2.3.2 The get sensor function 18
2.3.3 The set relay function . 18
2.3.4 The terminate function 18
2.3.5 The set status function 18
2.3.6 The get sn for device function (USB only) 19

2.4 The file lock.c . 19
2.4.1 The lock function . 19

2

CONTENTS 3

2.4.2 The unlock function . 19
2.5 The file logmessage.c . 20

2.5.1 The logmessage function 20
2.6 The scripts . 20

3 The read pt100 program 22
3.1 The file read pt100.c (ISA only) 22

3.1.1 The main routine . 22
3.2 The file read usb temp.c (USB only) 23

3.2.1 The main routine . 23
3.3 The file pt100.c . 24

3.3.1 The pt100 read calibration function 24
3.3.2 The pt100 ohm to kelvin function 24

3.4 The file temperature log.c . 24
3.4.1 The temperature log function 25
3.4.2 The scripts . 25

4 The show pt100 program 26
4.1 The main routine . 26
4.2 The treat file function . 26

5 The show status program 27

6 The show last fill program 28
6.1 The main routine . 28
6.2 The treat file function . 28

7 The show recent fills program 29
7.1 The main routine . 29
7.2 The treat channel function . 29
7.3 The qsort helper function . 30

8 The generate html script 31

9 The generate temp plot program 32
9.1 The main routine . 32
9.2 The check file function . 32
9.3 The write gnuplot header function 33

10 The generate duration plot program 34
10.1 The main routine . 34
10.2 The check file function . 34
10.3 The write gnuplot header function 35

11 The release pressure program 36

12 The scripts 37
12.1 The fill complete script.sh script 37
12.2 The fill fail script.sh script . 37
12.3 The warm script.sh script . 37
12.4 The rise script.sh script . 38

4 CONTENTS

13 The mailing lists 39

14 The automation of the system 40

15 The graphical user interface 41

16 Troubleshooting 42

Chapter 1

Introduction

1.1 The hardware

The Miniball filling system hardware was designed by Robert Hide of the Uni-
versity of York. It uses a various custom-made units, which are interfaced to a
PC by two ISA cards:

• A CIO-DIO96 to control the manifold valves and read the LN2 sensors.

• A CIO-DAS801 for the PT100 readout via an interface unit.

As ISA has been long obsolete, the possibility of replacing this system with
a PCI-based system was considered. There was, at that time, a possible re-
placement for the CIO-DIO96 (the PCI-DIO96) but no suitable replacement for
the other card. Later, USB was considered as another alternative and modules
were bought to test.

In 2008, new software was written to use these USB modules instead of the
ISA cards. This software uses:

• A USB-DIO96H/50 to control the manifold valves and read the LN2 sen-
sors.

• A USB-TEMP for the PT100 readout without an interface unit.

This document describes both the original software for the ISA system and
the modifications for the USB system. Most of the code is common to both.

The ISA interface card for the manifold valves (CIO-DIO96) and the LN2
sensors is normally at address 0x0300 and has four ports for each manifold each
of which has eight bits. The first is for the sensors, the second for the bias
shutdown, which we do not use since the Miniball detectors do not have a bias
shutdown output. The third port is for the valve relays and the fourth for con-
trol. There are four manifolds.

5

6 CHAPTER 1. INTRODUCTION

The USB system needs a configuration file to associate the serial number of
the USB-DIO96H/50 module (which is read out over USB) to the appropriate
channels. Otherwise, this device is compatible with the ISA card.

For the ISOLDE Decay Station, it was decided to clone this system.

1.1.1 The LN2 sensors

The first port for the LN2 sensors is read only. Each bit corresponds to one of
the LN2 sensors on the outlet side of the manifold. There is a potentiometer
for each sensor on the control box to set the threshold, so the only information
is a single bit per sensor to say whether the temperature of the sensor is above
or below the threshold (i.e. LN2 present or not). The first four bits are used
to correspond to the four valves. The next two bits are not used for Miniball,
but they are for the fifth and sixth valve. The next bit is for the purge sensor,
which detects when LN2 is at the purge outlet (i.e. the purge cycle is complete).
Finally the last bit is set when the key on the control box is in the manual po-
sition. This is used by the software to veto any software control when the key
is set to manual, but note this is implemented by the software, not the hardware.

1.1.2 The bias shutdown

Miniball does not use the bias shutdown at all. This was a feature that was put
in for exogam (for which the York system was originally designed).

1.1.3 The valve relays

For each valve there is a relay to open the valve and this is controlled by the
third port. The first four bits correspond to the four valves used for the detec-
tors. The next two bits are not used for Miniball but are for the fifth and sixth
valve. The next bit is for the purge outlet valve and the final bit is for the inlet
valve.

The port is read-write for the ISA card. Setting a bit causes the hardware to
open the corresponding valve and resetting it closes the valve. The port can be
read to find out which valves are open. It does not seem to be possible to read
with the USB module. In any case, the values read are most probably only an
indication of what the user has requested and not what is actually happening
at the level of the valve control unit.

To initiate a purge cycle, the bits corresponding to the purge and inlet valves
are opened, so that LN2 can go from the LN2 vessel into the manifold and out
through the purge outlet. When LN2 is detected on the LN2 sensor for the
purge outlet, the purge cycle is complete.

Once the purge has completed, the inlet is left open, the purge is closed and
the valves for the detectors are opened. Once LN2 is detected at the outlet for

1.2. THE SOFTWARE 7

each detector, they are closed one by one until none are left and then the inlet
is also closed.

Note that for the USB module, although the ports for the sensors and bias
shutdown are 8 bits wide, the relays use two 4-bit ports.

1.1.4 The control port (ISA card only)

The control port sets certain characteristics of the way the card works. Bit 0
is for the first four relays and bit 2 for the next four and these bits need to be
set to make those ports input ports, but we want an output port, so those bits
must not be set. Bits 6 and 7 set the direction. We write 0x90 to that port
before we do anything, which is correct for Miniball operation.

Note that this information is gleaned from playing with the system and does
not appear to be documented.

1.1.5 USB configuration (USB only)

The USB module is configured by sending special packets over USB. The MCC
USB library has functions to perform the settings. As for the ISA system, we
set the ports for the relays to write and the others to read mode.

1.1.6 The PT100 readout (ISA only)

The second card is more complicated than the first. It has 4 ports, the meaning
of which seems to be context dependent. The interface has several ADCs and
several multiplexers. It can read a total of 16 channels (i.e. 16 PT100s), but
only one at a time. You have to select the ADC and multiplexer and then ac-
quire a sample. We acquire a few samples and take an average. Note that this
card is fairly slow, so we have to give it plenty of time to do its job.

1.1.7 The PT100 readout (USB only)

The ISA system uses a digital I/O channel to control a multiplexer and then
an ADC to sample the output of that multiplexer. This is because the CIO-
DAS801 is an ADC card with a few of digital outputs. The USB version is
much simpler than the ISA one and uses a single module which measures the
temperatures directly. It is accessed via the MCC USB library.

1.2 The software

The two halves of the system (control of filling and sensors on the one hand and
reading the PT100s on the other) are naturally separate as they run on different
cards and perform different tasks. Consequently, the software has been designed

8 CHAPTER 1. INTRODUCTION

in two separate pieces:

• A filling program which performs a single fill cycle on one or more mani-
fold, including the purge cycle and the fill cycle, operating the manifolds
and monitoring the LN2 sensors. It calls a script whenever it completes,
whether successful or not and a second script if it fails. These scripts can
be used to send out e-mails, turn off high voltage etc.

• A PT100 readout program which reads all the detector temperatures on
all channels and writes them to files. It calls one script if the tempera-
ture goes above a certain threshold and another if the rate of increase in
the temperature exceeds a certain amount. These scripts can be used to
trigger emergency fills, send e-mails or turn off the high voltage.

There are two versions of the fill program fill isa and fill usb and two ver-
sions of the read PT100 program read pt100 isa and read pt100 usb. Two sym-
bolic links fill and read pt100 are used to select which of the two versions is
actually called.

The readout program can be called every five or ten minutes from a cron job
and the filling program can be called either manually from the command line,
or automatically from a cron job or from some special script.

The software has been designed so that both programs perform a task and
then exit, so that no code is left running continuously. The original software
written by the University of Liverpool for this hardware did things differently.
It had a program which ran continuously, but it had a memory leak and after
running for some time would run out of memory and then lock up the computer.
Consequently, the software described in this document uses a different design,
so that the programs exit between fills and PT100 readouts, and it is the oper-
ating system which is responsible for reclaiming memory etc., something which
linux does rather well.

1.3 Naming conventions

The manifolds are given letters A to D. The detector outlets are given numbers
from 1 to 4. So “A2” corresponds to outlet 2 on manifold A.

Chapter 2

The fill program

The filling program is called “fill” and is in fill.c. It makes use of the code in
logmessage.c to log messages to standard output and to the system logger, the
code in lock.c to lock devices so that two fill programs running at the same
time cannot access the same device and the code in disabledlist.c to determine
whether or not the fill has been disabled for a channel. The actual interface
with the hardware is done with either hardware isa.c or hardware usb.c. These
two files provide the same functions for ISA and USB, respectively. We build
two executables, one for ISA and one for USB.

Note that it is perfectly allowable for two fill programs to access different
devices as there are separate ports for each device. Indeed, the filling program,
as soon as it has processed the command line arguments, forks a separate sub-
process for each device.

2.1 The file fill.c

This file contains the main code for the filling program. It parses the command
line arguments and switches and forks a subprocess for each device with outlets
to be filled. For each device, it performs purge, fill and venting cycles and then
waits for LN2 to stop flowing at the sensors before exiting. Signals are trapped
and logged. On exit, errors are logged and scripts are called, which can take
actions according to the success or failure of the fill.

2.1.1 The main routine

int main(int argc, char **argv);

The main routine (in fill.c first processes the command line arguments. Switches
may be used to set the fill type (see section 2.1.12) or the minimum and max-
imum purge times, fill times and the minimum LN2 detection time. The re-
maining arguments indicate which outlets to fill. See section 1.3 for the naming

9

10 CHAPTER 2. THE FILL PROGRAM

convention for the outlets.

For example the command:

fill A1 C2

will fill the first outlet on the first device and the second outlet on the third
device.

It calls the function read disabled list in disabledlist.c (which in turn calls
analyse disabled list - see section 2.2.1 and section 2.2.2) to get a list of disabled
outlets from a file. These outlets will never be filled and if the user requests
to fill one of these an error message will be written and that outlet will not be
filled (though any valid outlets will be).

Then for each device which is to be filled fork (see the fork(2) man page) is
called and in the child process the function treat device (see section 2.1.2) is
called. The parent process calls wait4 (see the wait4(2) man page) to wait for
its children to exit.

After that, the program drops its privileges using seteuid (see the seteuid(2)
and getuid(2) man pages) and executes the completion script (see section 2.6).

2.1.2 The treat device function

static int treat device(int device);

The function treat device (in fill.c is called once for each device, in a sepa-
rate process running in parallel. We do not want to fill the devices one after
another as they may have common LN2 lines, which need to be cooled down
and the fill is, consequently, most efficient when everything is filled at once.

The function is called with a device parameter, which tells the function which
device it has to fill.

First of all, we establish an exit handler using atexit (see the atexit(2) man
page) which will be called when the process exits for whatever reason. This exit
handler is responsible for logging and triggering certain scripts (see section 2.6).

After that we establish a signal handler (see section 2.1.7) for all signals
which can be intercepted using signal (see the signal(2) man page), except for
SIGCHLD, which we ignore. This ensures that if the program crashes with a
segmentation violation, or is killed by the user or by a control C, the signal han-
dler is called. The signal handler makes sure that all the relays are closed again
and then exits (causing the exit handler to be called, which logs the event). It is
safe to kill the filling program as the signal will be correctly handled. However,
it is not safe to use “kill -9” because this will leave the valves open.

Next we lock the appropriate device using the function lock (see section
2.4.1), so that no other instance of the filling program can access the same de-

2.1. THE FILE FILL.C 11

vice. If you issue two fill commands on the same device together, even if they
are for different detector outlets the second one will wait for the first to complete
before starting. This is unavoidable because they share common hardware. If
you want to fill two detector outlets at the same time you should specify both
when calling the fill command. On the other hand, there is no problem about
filling two outlets on different devices with two fill commands, which will exe-
cute simultaneously, as this does pretty much the same thing the fill program
does internally.

Then we call logmessage (see section 2.5.1) to write a message to the system
logger and standard output.

After that we call init in either hardware isa.c or hardware usb.c, which
initialises the device.

For ISA this means calling ioperm (see the ioperm(2) man page) to grant the
program access permissions to the ports we need to use. Note that this means
that the program must be run with root privileges. The program is written to
be installed suid root and it will drop its privileges before calling scripts. This
is the only way to access ISA ports without writing a kernel driver. Then it
sets the bits of the control register, which determine which port is for input and
which for output.

For USB, we first read a configuration file to find out which serial number is
associated with the given device. This is the serial number printed on the front
of the USB-DIO96H/50 module, which can also be read via USB. Then we scan
the USB bus for USB-DIO96H/50 modules and when we find one, we read its
serial number and compare with the one associated with this device. When we
find it, we configure the direction of the ports.

Now we are ready to start, which we do by calling the function purge (see
section 2.1.3). This function performs the purge cycle which involves opening
the inlet valve and the purge outlet valve and waiting until LN2 is detected at
the purge sensor.

Once the purge is complete, we call the fill (see section 2.1.4) function to
perform the fill cycle. This consists of leaving the inlet valve open, closing the
purge outlet valve and opening the individual detector outlet valves. Each de-
tector outlet is closed when LN2 is detected at the corresponding sensor until
all detector outlets have closed and then the inlet valve is also closed.

After the purge, we call vent (see section 2.1.5) to vent the manifold. We
do this by closing the inlet and all the outlets and opening the purge valve. In
this way, any gas in the manifold is released.

Finally, we call wait for dry (see section 2.1.6) which waits until the sensors
on all the outputs, which we filled show gas. Then we return, which causes the
exit handler to be called.

12 CHAPTER 2. THE FILL PROGRAM

2.1.3 The purge function

static int purge(int device);

The purge function first records the time that purging started and then sets the
program state to PROGRAM STATE PURGING (this state is given in logging
information). Then it calls get sensor (see section 2.3.2) to get the sensors. It
doesn’t use the value of the sensors, but relies on the side effect that get sensor
will exit with an error message if the key is turned to manual.

Next it uses logmessage to write a logging message and set relay (see section
2.3.3) to open the inlet and purge outlet valves.

After that, it enters a loop which calls usleep (see the usleep(3) man page)
to yield the CPU to avoid consuming too much CPU time. On each iteration,
it uses get sensor to get the value of the LN2 sensors checks for a timeout con-
dition, and checks for LN2 detected at the purge outlet. If LN2 is detected, it
breaks out of the loop and logs this with logmessage and returns. If a timeout
occurs, it closes all the relays with set relay and sets the program state to PRO-
GRAM STATE PURGE TIMEOUT and returns an error code, which causes
treat device to abort. Note that LN2 detected before the minimum purge time
is simply ignored.

2.1.4 The fill function

static int fill(int device);

The fill function starts off by setting the program state to PROGRAM STATE FILLING
and the mask to INLET VALVE. Then it logs the start of the fill and records
the time.

After that it enters a state machine which consists of an iteration loop,
within which there is a loop over each channel and a switch over the state for
each channel. After each loop on the channel, the valves are set as indicated
by the mask variable. We call usleep on each iteration to avoid consuming too
much CPU and get sensor to see if LN2 has been detected anywhere.

The mask variable is used in a call to set relay (see section 2.3.3), which
opens and closes valves according to this mask.

The values of the state machine are:

OUTLET_STATE_PURGE

OUTLET_STATE_WAIT_LN2

OUTLET_STATE_GOT_LN2

OUTLET_STATE_IGNORE

OUTLET_STATE_DONE

OUTLET_STATE_FILLED

OUTLET_STATE_WAIT_ABORT

2.1. THE FILE FILL.C 13

The purge function leaves all the outlets which are to be filled in the OUT-
LET STATE PURGE state and the rest in the OUTLET STATE IGNORE
state.

OUTLET STATE PURGE

This is the first state we get to for outlets, which are to be filled.

In this state, we simply set the bit corresponding to that channel in the mask,
which will be used to determine which valves to open, log that we are starting
to fill that channel and change its state to OUTLET STATE WAIT LN2.

OUTLET STATE WAIT LN2

An outlet is in this state if filling has begun, but LN2 has not yet been detected.

In this state, we wait until LN2 is detected or the time limit is reached. In
either case, we log what has happened and if LN2 was detected we change
to OUTLET STATE GOT LN2 and if we timed out, we change to OUT-
LET STATE WAIT ABORT.

OUTLET STATE GOT LN2

An outlet is in this state if filling has begun and LN2 has been detected.

We wait to see if LN2 continues to flow for long enough. If not, we change
back to OUTLET STATE WAIT LN2. If LN2 flows for the required time, we
change to OUTLET STATE FILLED.

OUTLET STATE FILLED

An outlet in this state has been successfully filled, but the valves are still open.

We remove the bit corresponding to that outlet from the mask, so that the
valve will be closed afterwards. If this was the last bit corresponding to an outlet,
we also remove the inlet bit. Then we change state to OUTLET STATE DONE.

OUTLET STATE IGNORE and OUTLET STATE DONE

These two states have the same behaviour. The former is the first and only
state for an outlet that should not be filled. The latter is the last state for a
channel that has already been successfully filled and the valve has been closed,
or for a channel that has encountered an error.

We return from the fill function here, breaking right out of the state machine.

14 CHAPTER 2. THE FILL PROGRAM

OUTLET STATE WAIT ABORT

An outlet in this state has encountered some error condition.

We reset the bit corresponding to that outlet in the mask variable and if it
was the last outlet, we also reset the inlet bit, so that these valves will be closed
later. Then we change to OUTLET STATE DONE.

2.1.5 The vent function

static int vent(int device);

This function closes the inlet and outlet valves but opens the purge. This
vents the device. It is called after filling is complete to release the pressure in
the manifold. Note that it is even called if the purge failed, because we might
still have filled the manifold with LN2 even if the purge sensor didn’t detect any.

2.1.6 The wait for dry function

static int wait for dry(int device);

This function waits until the sensor corresponding to each outlet, which was
filled indicates gas rather than liquid. The fill is not deemed to be complete
until liquid stops flowing out of the detectors.

2.1.7 The signal handler function

static void signal handler(int signum);

This function is installed as a signal handler for all interceptable signals ex-
cept SIGCHILD (which is ignored). It logs the event with logmessage and then
exits, causing the exit handler to be invoked. It is the exit handler, which will
then close all the valves and invoke the failure script if one of the outlets has
failed.

2.1.8 The exit handler function

static void exit handler();

This function is installed as the exit handler which gets called whenever the
program exits for whatever reason (good or bad).

First of all it calls terminate (see section 2.3.4) to close all the valves.

Then it adds a line to the log file for each channel that we tried to fill by
calling add to log (see section 2.1.9).

2.1. THE FILE FILL.C 15

Next it checks each outlet and counts the number of failures. If there were
none, that is all and the function returns. However, if there were failures, it
builds up the command to execute for the failure script.

Before this script is called, it uses seteuid (see the seteuid(2) and getuid(2)
man pages) to drop any privileges it may have gained by being installed suid
root. This is for security reasons, so that any scripts executed after (see section
2.6) are executed by the calling user not root (unless root is the calling user, of
course).

Then it calls the script without privileges, passing the fill type as the first pa-
rameter (either “MANUAL”, “AUTOMATIC” or “EMERGENCY”) and then
the list of outlets which failed. The script can then use this parameter to de-
cide how critical the failure was and take action accordingly. Generally, it is
assumed that when a manual fill fails, the person alone, who issued it is re-
sponsible for taking the appropriate action. For an automatic fill, we would
normally send out an SMS to alert someone and if an emergency fill fails, we
should probably also shut down the high voltage. However, the precise action
is a policy decision to be made in the script based on the parameters passed to it.

2.1.9 The add to log function

static int add to log(int outlet);

This function generates a line of logging text for the outlet, indicating the
program state (see section 2.1.11), the fill state (see section 2.1.10) as well as
fill and purge times.

It then prepends this line to the appropriate log file (based on the outlet
name) using prepend to file (see section 2.1.9).

The prepend to file function

static int prepend to file(char *filename, char *line);

This function prepends the line of text to the file specified by the filename,
truncating to a maximum number of lines.

2.1.10 The filling states

The following outlet fill states are defined in fill.h

• OUTLET STATE PURGE - this outlet is being purged.

• OUTLET STATE WAIT LN2 - we are filling and waiting for LN2 to ap-
pear at the outlet sensor.

16 CHAPTER 2. THE FILL PROGRAM

• OUTLET STATE GOT LN2 - we have LN2 already at the outlet sensor
having already filled but we need to make sure it isn’t just a short spurt,
but that it flows for the prescribed amount of time. If it doesn’t we switch
back to the previous state.

• OUTLET STATE FILLED - we have had LN2 for the prescribed amount
of time, so we are sure that the detector is full.

• OUTLET STATE WAIT ABORT - this state means that we’ve been told
to give up, for example because of a timeout.

• OUTLET STATE VENT - this outlet is being vented.

• OUTLET STATE DRY - we have already filled, and closed the valve but
LN2 is still flowing, so we have to wait for it to dry up.

• OUTLET STATE DONE - we have successfully completed everything on
that outlet, but we may need to wait for other outlets.

• OUTLET STATE IGNORE - this outlet doesn’t need filling at all. This
is the default state for outlets not specified on the command line. As far
as the program is concerned it is the same as OUTLET STATE DONE
(i.e. one which we don’t have to fill at all is the same as one which has
already been filled).

2.1.11 The program states

The following program states are defined in fill.h:

• PROGRAM STATE INITIALIZING - the program is starting up.

• PROGRAM STATE KILLED - the program has been killed and the signal
handler invoked.

• PROGRAM STATE PURGING - the program is purging the device.

• PROGRAM STATE FILLING - the program is filling the detectors.

• PROGRAM STATE SUCCESS - the program has completed its job suc-
cessfully.

• PROGRAM STATE HARDWARE ERR - this occurs if the hardware doesn’t
respond correctly.

• PROGRAM STATE KEY ERR - this occurs if the key is set to manual

• PROGRAM STATE PURGE TIMEOUT - a timeout occurred during the
purge cycle.

• PROGRAM STATE OUTLET ERR - one or more of the outlets failed to
fill correctly. The outlet state should give more information.

• PROGRAM STATE VENTING - the program is venting the device after
filling.

• PROGRAM STATE DRYING - the program is waiting for all the outlets
which were filled to stop showing liquid at the sensor.

2.2. THE FILE DISABLEDLIST.C 17

2.1.12 The fill types

There are three types of fill which are set by specifying switches on the command
line:

• Automatic fill. This is performed by using “fill –auto”. This should only
be used from a cron job filling automatically at a scheduled time.

• Manual fill. This is performed using “fill” without any switches and should
be used when a person types the command from the command line.

• Emergency fill. This is performed by using “fill –emergency”. This should
be used from scripts which have detected some problem and need to ini-
tiate a fill at an unscheduled time.

The actual fill is performed in the same manner for all three types of fill, but
the type of fill is logged in the log files and should the fill fail, it is possible to
take different actions according to the type of fill. For example, if the fill was
a manual one, it is not necessary to start sending out panic messages, since it
means somebody must have been there to type the command in the first place.
If an auto fill fails, attention is needed, but it is not a disaster. However, if an
emergency fill fails, it is almost certainly necessary to shutdown the high voltage
etc.

2.2 The file disabledlist.c

This file has the code to handle the disabled list. The user can enter here the
channels, which should not be filled under any circumstances.

2.2.1 The read disabled list function

int read disabled list(char *filename);

This function (in disabledlist.c parses the file specified by the filename parame-
ter, looking for a line like:

disabledlist="A3 B2"

It extract the string after the equals sign and passes it to analyse disabled list
(see section 2.2.2).

2.2.2 The analyse disabled list function

static int analyse disabled list(char *list);

This function parses the list of devices from all fill disabled.sh and marks the
ones it finds in the array fill disabled, which is used in the main routine to elim-
inate disabled outlets from the list of outlets to fill. Outlets in this list may
not be filled even manually. This is different from the emergency fill disabled.sh
which is only used by the scripts.

18 CHAPTER 2. THE FILL PROGRAM

2.3 The files hardware isa.c and hardware usb.c

These two files implement identical functions, which perform the same tasks,
but using different hardware. They contain all the hardware-specific code for
ISA and USB, respectively.

2.3.1 The init function

int init(int device);

The init function merely writes 0x90 to the control port for the appropriate
device (as determined by the global variable device). This sets the port direc-
tions correctly.

2.3.2 The get sensor function

int get sensor(int device);

This function merely uses inb (see the inb(2) man page) to read the sensor
state from the port. It also checks the key sensor and if that indicates the
key is set to manual, it sets the program state to PROGRAM KEY ERROR,
closes the valves and exits. Otherwise it returns the bit mask read from the port.

2.3.3 The set relay function

int set relay(int device, int mask);

This function uses outb (see the outb(2) man page) to write to the port con-
trolling the relays for the given device. It then uses inb to read back the re-
sult to make sure it worked. If it didn’t it sets the program state to PRO-
GRAM STATE HARDWARE ERR and returns an error code. The mask pa-
rameter contains the bits to set.

2.3.4 The terminate function

int terminate(int device);

This function closes all the valves for the device. It is used to shut down the
device.

2.3.5 The set status function

static int set status(int N, unsigned char val);

2.4. THE FILE LOCK.C 19

This function writes the value val to the Nth byte of the file defined as STA-
TUS FILE in af config.h. It is called for each LN2 sensor and each relay (dif-
ferent values of N) and the bits in val correspond to the different sensors and
relays. This file is read by the show status program (see section 5).

2.3.6 The get sn for device function (USB only)

static int get sn for device(char *filename, int device);

This function is only present in the USB version of the code. It opens the con-
figuration file, and finds the serial number of the USB-TEMP module, which
the user has configured to handle a particular device. This value is returned.

2.4 The file lock.c

This file contains the code for locking devices. It uses semaphores to provide lock
and unlock functions. If two processes try to lock with the same semaphore, the
first one succeeds and the second one hangs until the first process relinquishes
the lock (either by explicitly unlocking or by exiting).

2.4.1 The lock function

int lock(int sem num);

Locking is performed using Sys V semaphores (see the semget(2), semctl(2)
and semop(2) man pages for details). The code is in the file lock.c.

A value of zero for sem num is used to lock the PT100s and values of 1 to 4
correspond to devices A to D.

This function attempts to use a set of semaphores, creating them if necessary
using semget and if it created them, initializes them to the “unlocked” state us-
ing semctl. Then it uses semop to lock the one specified. The SEM UNDO flag
is set, which means that should the process exit, the operating system will auto-
matically unlock the semaphore. Alternatively, we can call the unlock function
(see section 2.4.2) to relinquish the lock.

If another process already holds the lock, the call to semop will hang until
that process releases the lock.

2.4.2 The unlock function

int unlock(int sem num);

This function relinquishes a lock taken out by lock, but it isn’t actually called.

20 CHAPTER 2. THE FILL PROGRAM

Instead we rely on the kernel to automatically release the lock, when the pro-
gram exits.

2.5 The file logmessage.c

This file implements the message logging. Log messages are written both to
standard output and to the system logger.

2.5.1 The logmessage function

int logmessage(char *fmt, . . .);

This function is in logmessage.c and is called in the same way as printf (see
the printf(3) man page).

It writes the text into the system log file using the openlog, syslog and
closelog functions (see the syslog(3) man page). This will end up in some file
like /var/log/messages where it will be rotated by the normal system log file
rotation programs.

2.6 The scripts

The filling program has two scripts that it can execute:

• fill complete script.sh - called after every fill, whether successful or not.
This can be used to send log files to people etc. For example, the default
script executes the commands show last fill and show pt100 and mails
the output to the af info mailing list. The script is called with the list of
outlets which were filled as arguments.

• fill fail script.sh - called when a fill fails. The script is called with the
fill type (either “MANUAL”, “AUTOMATIC” or “EMERGENCY”) as
the first parameter and the list of outlets for which the fill failed as the
remaining arguments. In this way, the script can react differently to a
failed manual fill (where we suppose the user is present), an automatic
fill (where we should warn the user, and hope that (s)he reacts before it
becomes critical) and an emergency fill (where as we were already reacting
to an emergency, it is essential to shutdown the high voltage).

Note that if fill is called for outlets on more than one device, the completion
script is only called once for all the outlets on all the devices, but the failure
script is called once for each device where the fill failed with just the outlets on
that device which failed. This is a consequence of the structure of the program.
The only inconvenience is that if all the devices fail (e.g. you have two devices
on one LN2 vessel which has run dry) you get a message for each device, rather

2.6. THE SCRIPTS 21

than one for the whole system.

The default script sends an e-mail to the af info list only, if it was a manual
fill. If it was an automatic fill, it sends an e-mail to the af sms list (which can
be forwarded through an e-mail to SMS gateway), and another to the af emerg
list. If an emergency fails it does the same as an automatic fill failure and also
turns off the high voltage.

Chapter 3

The read pt100 program

The second most important program of the filling system is the read pt100 pro-
gram in read pt100.c. It also uses code in lock.c and logmessage.c (see sections
2.4.1 and 2.5.1).

It reads all the ADCs for the PT100 readout and converts the results into
temperatures in Kelvin.

The program uses the files pt100.c, temperature log.c, logmessage.c and
lock.c for both USB and ISA versions. The only difference between the two
versions is the main routine, which is in read pt100.c for the ISA version and
read usb temp.c for the USB version.

Note that the ISA version must be installed with privileges in order to access
the ports, but the USB version does not need this, as long as the udev rule is set
up to grant users access to this kind of USB device (e.g. in /etc/udev/rules.d/77-
mccusb.rules):

KERNEL=="hiddev*", NAME="hiddev%n", MODE="0666"

3.1 The file read pt100.c (ISA only)

3.1.1 The main routine

int main(int argc, char **argv);

First of all it calls pt100 read calibration to read in the calibrations for each
PT100 (see section 3.3.1).

Then it calls lock (see section 2.4.1) to lock the semaphore corresponding to
the PT100 readout (semaphore zero).

After that it calls ioperm (see the ioperm(2) man page) to grant the pro-
gram access permissions to the ports we need to use. Note that this means that
the program must be run with root privileges. The program is written to be

22

3.2. THE FILE READ USB TEMP.C (USB ONLY) 23

installed suid root and it will drop its privileges before calling scripts. This is
the only way to access ISA ports without writing a kernel driver.

After that, the program drops its privileges using seteuid (see the seteuid(2)
and getuid(2) man pages) and executes the completion script (see section 3.4.2).

Then it performs input and output operations on the card using inb and outb
(see the inb(2) and outb(2) man pages) to read each of the 16 ADCs in turn
(corresponding to the four outlets on the four devices). The value is converted
to Kelvin and the command temperature log (see section 3.4.1) is called passing
the number of the ADC and the temperature of the PT100 in Kelvin to log the
value.

The temperature log function also checks if the temperature has exceeded a
threshold or if the rate of increase in the temperature exceeds another threshold
and triggers the execution of scripts in those cases (see section 3.4.2).

3.2 The file read usb temp.c (USB only)

3.2.1 The main routine

int main(int argc, char **argv);

First of all it calls pt100 read calibration to read in the calibrations for each
PT100 (see section 3.3.1).

Then it calls lock (see section 2.4.1) to lock the semaphore corresponding to
the PT100 readout (semaphore zero).

Next, it searches the USB bus for USB-TEMP devices using the PMD Find
function of the MCC USB library. This opens a file descriptor to each such
device and returns the number of devices.

For each device, we configure the port and each of the sensors. We use the
RTD two-sensor, two-wire mode, which gives us 8 PT100s per module.

Then we perform a temperature scan for each device and covert each resis-
tance, which was read from Ohms to Kelvin and the command temperature log
(see section 3.4.1) is called passing the number of the channel and the temper-
ature of the PT100 in Kelvin to log the value.

The temperature log function also checks if the temperature has exceeded a
threshold or if the rate of increase in the temperature exceeds another threshold
and triggers the execution of scripts in those cases (see section 3.4.2).

24 CHAPTER 3. THE READ PT100 PROGRAM

3.3 The file pt100.c

This file contains the code to calibrate the PT100s from Ohm to Kelvin. There
are two functions, one to read the calibration from a file or take the default
values and the other to convert for a given channel.

3.3.1 The pt100 read calibration function

int pt100 read calibration();

The pt100 read calibration function for the read pt100 program reads the file
defined as PT100 CAL FILE in af config.h which has the format “channel off-
set gain” where channel is something like A1, B2 etc. and the offset is typically
something like 25.8944 and the gain 2.45849. This allows the user to adjust the
calibration of the PT100s individually, so that a single set of global thresholds
can be used by the warm script.sh script.

This conversion is from a resistance in Ohm to a temperature in Kelvin. It
does not matter too much if it is accurate over a large range, but it should be ac-
curate in the range around liquid nitrogen temperatures. If we ignore additional
resistance due to the cables, we expect the default values, which are obtained
from a linear fit in the useful regime. However, sometimes wiring issues lead to
different coefficients. The best thing is to measure the resistance with a 50 Ω
terminator and with two such terminators in parallel (i.e. 25 Ω) and use that
to calibrate.

3.3.2 The pt100 ohm to kelvin function

int pt100 ohm to kelvin(int channel, float resistance);

The pt100 ohm to kelvin function takes a resistance in Ohm for a given chan-
nel and returns the temperature in Kelvin using the calibration read in by
pt100 read calibration (see section 3.3.1).

3.4 The file temperature log.c

This file contains the code for logging the temperatures. A limit is imposed on
the maximum number of lines the log file can have, with the oldest entries being
removed to make way for new ones.

Furthermore, this code checks the temperature to look for rises in the tem-
perature or warm detectors and calls scripts appropriately.

3.4. THE FILE TEMPERATURE LOG.C 25

3.4.1 The temperature log function

int temperature log(int num, float temp);

The temperature log function for the read pt100 program is similar to the add to log
function for the fill program (see section 2.1.9) in that it prepends a line of text
to a log file. However, it performs two important additional service in that it
checks both the absolute temperature and the relative rise in temperature since
the last log entry to see if the detector is either warm or warming up.

If the temperature is rising by more than RISE THRESH degrees per minute
(defined in af config.h), the rise script is called (see section 3.4.2).

If the temperature goes above WARM THRESH (defined in af config.h), the
warm script (see section 3.4.2) is called.

3.4.2 The scripts

There are two scripts which may be called by the read pt100 program:

• warm script.sh - called if the temperature goes above the WARM THRESH
defined in af config.h. It is called with the outlet as the first parameter
and the temperature as the second. The script can decide if it wants to
try and issue an emergency fill, turn off the high voltage, send an e-mail
or an SMS or whatever.

• rise script.sh - called if the temperature rises faster than RISE THRESH
defined in af config.h per minute. The script is called with the outlet
as the first parameter, the old temperature as the second, the current
temperature as the third and the time between the two temperature mea-
surements as the fourth parameter. It probably only makes sense to react
if the temperature has risen sharply, which probably means the detector
is dry, but has not yet warmed up to the thresholds used by the warm
script.

Chapter 4

The show pt100 program

This program reads the log files generated by read pt100 (see chapter 3) and
writes out the current temperature for each detector.

Note that this program doesn’t interface directly to the hardware, but only
reads the log files, so it is hardware independent.

4.1 The main routine

int main(int argc, char **argv);

This program accepts an option “-h” which causes the output to be in HTML
for inclusion in a web page.

After checking the switches, it writes a heading and then for each device and
each outlet, it generates a filename and calls treat file (see section 4.2) to handle
it. Finally it writes a trailer if it is in HTML mode.

4.2 The treat file function

int treat file(char *filename, char device, int outlet);

This function opens the file specified by filename, reads the temperature from
the first line (the data are prepended by read pt100 (see chapter 3) so we only
need the first line). Then it writes the output.

26

Chapter 5

The show status program

While the fill program is filling (see section 2.3.5), it writes to a binary sta-
tus file the status of all the valves and LN2 sensors. The file name is defined
as STATUS FILE in af config.h. The show status program reads this file and
writes the information in human readable form.

Note that this program doesn’t interface directly to the hardware, but only
reads the log files, so it is hardware independent.

27

Chapter 6

The show last fill program

This program reads the log files generated by fill (see chapter 2) and writes out
the last fill times and status of each outlet.

Note that this program doesn’t interface directly to the hardware, but only
reads the log files, so it is hardware independent.

6.1 The main routine

int main(int argc, char **argv);

This program accepts an option “-h” which causes the output to be in HTML
for inclusion in a web page.

After checking the switches, it writes a heading and then for each device and
each outlet, it generates a filename and calls treat file (see section 6.2) to handle
it. Finally it writes a trailer if it is in HTML mode.

6.2 The treat file function

int treat file(char *filename, char device, int outlet);

This function opens the file specified by filename, reads the first line (the data
are prepended by fill (see chapter 2) so we only need the first line). Then it
writes the output.

28

Chapter 7

The show recent fills
program

This program reads the log files generated by fill (see chapter 2) and writes out
the times of the fills within the last 24 hours.

Note that this program doesn’t interface directly to the hardware, but only
reads the log files, so it is hardware independent.

7.1 The main routine

int main(int argc, char **argv);

This program accepts an option “-h” which causes the output to be in HTML
for inclusion in a web page.

After checking the switches, it writes a heading and then for each device and
each outlet, it generates the channel name and calls treat channel (see section
7.2) to handle it. Finally it writes a trailer if it is in HTML mode.

7.2 The treat channel function

int treat channel(char *name);

This function opens the file corresponding to the channel name, reads the lines
parsing the times and remembering them. It stops doing this when it reaches a
time older than 48 hours plus 5 minutes.

Then it sorts the times chronologically (they are in inverse chronological or-
der in the file) by calling the system function qsort and using the qsort helper
function to sort by time.

29

30 CHAPTER 7. THE SHOW RECENT FILLS PROGRAM

7.3 The qsort helper function

int qsort helper(const void *a, const void *b);

This is a helper function for qsort to sort an array of time t values chrono-
logically.

Chapter 8

The generate html script

This script generates an html page containing the output from show pt100,
show last fill and show recent fills which it calls and the temperature and du-
ration plots produced by generate temp plot and generate duration plot. See
chapters 4, 6, 7, 9 and 10.

31

Chapter 9

The generate temp plot
program

This program generates a plot of the temperatures as a function of time, using
gnuplot (see the gnuplot(1) man page). It uses the information in the log files
generated by read pt100 (see chapter 3).

9.1 The main routine

int main(int argc, char **argv);

For each device and for each outlet, this routine calls check file (see section
9.2) which returns 0 if there is no useful data (i.e. within the last NDAYS
days) or 1 if there is data to plot. This data is read from the files produced by
read pt100 (see chapter 3).

Then it uses popen (see the popen(3) man page) to start a process run-
ning gnuplot (see the gnuplot(1) man page) if it is the first time, and calls
write gnuplot header (see section 9.3) to write the header for gnuplot. Then it
writes a command for gnuplot. All of this causes gnuplot to generate the plot.

9.2 The check file function

int check file(char *filename);

This function reads the file specified by the filename and checks if it has any
data in the last NDAYS days. If it does, it returns 1, otherwise it returns 0.

32

9.3. THE WRITE GNUPLOT HEADER FUNCTION 33

9.3 The write gnuplot header function

int write gnuplot header(FILE *fp);

This function writes the a sequence of gnuplot commands to setup the plot
to the output stream, which is normally a pipe to gnuplot.

Chapter 10

The generate duration plot
program

This program generates a plot of the fill durations as a function of time, using
gnuplot (see the gnuplot(1) man page). It uses the information in the log files
generated by fill (see chapter 2).

10.1 The main routine

int main(int argc, char **argv);

For each device and for each outlet, this routine calls check file (see section
10.2) which returns 0 if there is no useful data (i.e. within the last NDAYS
days) or 1 if there is data to plot. This data is read from the files produced by
fill (see chapter 2).

Then it uses popen (see the popen(3) man page) to start a process run-
ning gnuplot (see the gnuplot(1) man page) if it is the first time, and calls
write gnuplot header (see section 10.3) to write the header for gnuplot. Then it
writes a command for gnuplot. All of this causes gnuplot to generate the plot.

10.2 The check file function

int check file(char *filename);

This function reads the file specified by the filename and checks if it has any
data in the last NDAYS days. If it does, it returns 1, otherwise it returns 0.

34

10.3. THE WRITE GNUPLOT HEADER FUNCTION 35

10.3 The write gnuplot header function

int write gnuplot header(FILE *fp);

This function writes the a sequence of gnuplot commands to setup the plot
to the output stream, which is normally a pipe to gnuplot.

Chapter 11

The release pressure
program

Sometimes it is necessary to release the pressure on the device. This can ei-
ther be done by switching the key to manual and opening the purge valve for a
second and then switching back, or by using the release purge program, which
does the same thing.

This program takes the device letter as a parameter and uses functions sim-
ilar to the ones in the fill program (see chapter 2).

36

Chapter 12

The scripts

12.1 The fill complete script.sh script

This script is called whenever a fill has completed regardless of whether it suc-
ceeded or not. It simply calls show pt100 (see chapter 4) and show last fill (see
chapter 6 and pipes the results into mail (see the mail(1) man page) to send it
to the af info list (see chapter 13).

12.2 The fill fail script.sh script

This script gets called when a fill actually fails. It is called so that the first
parameter is either “MANUAL”, “AUTOMATIC” or “EMERGENCY” indi-
cating the type of fill. It is assumed that a failure on an emergency fill is the
most serious as it implies a detector is already warming up and the fill failed.
A failure on a manual fill is assumed to be the least serious, since it is supposed
that the person who initiated the manual fill is there to do something about it.
For this reason, a failure on an emergency fill triggers a ramping down of the
high voltage and a message to the af emerg list (see chapter 13). A failure on
an automatic fill also triggers a message to af emerg, but no HV shutdown. A
failure of a manual fill, however, only sends a message to af info.

12.3 The warm script.sh script

This script is called if a detector warms up above the threshold specified in
af config.h. It implements some new thresholds which determine what it should
do. Above 250 K it just ramps down the high voltage without bothering to try
and fill again or sending out e-mails. Between 200 K and 250 K it ramps down
the high voltage and sends out e-mails to the af emerg list (see chapter 13),
but doesn’t bother trying to fill. Between 130 K and 200 K it sends e-mails to
af emerg, ramps down the voltage and tries to force fill the detector. Between
105 K and 130 K it sends e-mails to the af warn list (not the af emerg list this
time, as it is not an emergency if the temperature goes back down) and tries to

37

38 CHAPTER 12. THE SCRIPTS

force fill, but leaves the voltage on. Below 105 K it does nothing.

This script sources the emergency fill disabled.sh script which has a defini-
tion of those outlets which should not be filled by the scripts. This list does not
effect the automatic or manual filling, just the scripts. It has the format:

#!/bin/bash

DISABLEDLIST="A1 B1 B2 B3 B4 D1 D2 D3 D4"

which would be appropriate if A2, A3, A4, C1, C2, C3 and C4 all had detectors
attached.

12.4 The rise script.sh script

This script is called if a rise in the temperature is detected. If the temperature
exceeds 130 K, it does nothing as the warm script.sh script (see section 12.3)
will take care of it. Otherwise it sends e-mails to the af warn list (see chapter
13) and tries to force a fill.

This script sources the emergency fill disabled.sh script which has a defini-
tion of those outlets which should not be filled by the scripts. This list does not
effect the automatic or manual filling, just the scripts. It has the format:

#!/bin/bash

DISABLEDLIST="A1 B1 B2 B3 B4 D1 D2 D3 D4"

which would be appropriate if A2, A3, A4, C1, C2, C3 and C4 all had detectors
attached.

Chapter 13

The mailing lists

The file ∼/.mailrc contains mail aliases which are used by the filling system:

• af info - receives general informational messages about the system which
are sent out every time it fills. This is quite a high traffic list and most of
it is not important.

• af warn - receives warning messages when something happens which is not
serious, but could become a problem later. This should go to people who
might be able to prevent it from becoming a problem preemptively. For
example, if a detector warmed up so that it needed an emergency fill, but
not enough to need to turn of the high voltage, the system may be able
to bring back down the temperature by emergency filling without human
intervention, so a warning is sufficient. If somebody is around they should
take a look.

• af emerg - receives emergency messages when something happens that
needs immediate intervention. This should go to as many people as pos-
sible in the hope that one of them can do something.

• af sms - receives an emergency message if an automatic or emergency fill
fails. This is likely to be a serious problem. This can be rerouted through
an e-mail to SMS gateway, so that it gets sent to somebody’s mobile
telephone. Note that whenever the code sends to af sms it also sends to
af emerg.

39

Chapter 14

The automation of the
system

The automatic filling is achieved by calling the fill program from a cron job
(see the cron(8) man page) at the desired fill times. The list of detectors to fill
and the times to fill is kept in the crontab, which can be viewed using “crontab
-l” (see the crontab(1) man page) from the autofill account and edited using
“crontab -e”.

The format for crontab is shown in the crontab(5) man page. A typical line
is:

00 04,10,16,22 * * * /usr/bin/fill --auto a1 a3 a4 c1 c2 c3 > /dev/null

which fills at 4 AM, 10 AM, 4 PM and 10 PM (the 04,10,16,22) on outlets a1,
a3, a4, c1, c2, c4. The output is redirected to /dev/null as it is only generally
useful for debugging purposes and the same messages are also sent to the system
logger which puts them in /var/log/messages.

The reading of the PT100s is done every five minutes using the crontab
entry:

0-59/5 * * * * /usr/bin/read_pt100

There are three further jobs which are used to generate a web page summa-
rizing the current state of the filling system every ten minutes.

1-59/10 * * * * generate_html

2-59/10 * * * * generate_temp_plot

3-59/10 * * * * generate_duration_plot

These files are copied to another computer using another cron job running under
a different username.

40

Chapter 15

The graphical user interface

The graphical user interface (af config) provides an interface to these programs.
It is written in Tcl/Tk. It also uses the programs af set times and af status.
The former is used to edit the crontab and the latter displays the status of the
valves and LN2 sensors during the fill.

41

Chapter 16

Troubleshooting

If a fill command hangs and nothing happens, check if there is another fill com-
mand running. If so, do a “killall fill” and try again. If one fill program is still
running for some reason, even if it is not doing anything, it keeps the semaphore
locked, so no other fill can start.

If you get a HARDWARE ERROR status, check all the connections to the
manifolds and the manifold controller. This error occurs when the computer
tells the manifold controller to set the valves to a particular state and when it
asks them what state they are in, they are not in the desired state.

If LN2 flows out of a purge or detector outlet, but the program doesn’t react
to that, check that the LN2 detect light on the manifold controller box is react-
ing to the LN2. If it isn’t you probably need to adjust the threshold using the
screw (near the light on the controller box). They seem to drift with time, so if
you see that fill times are getting longer and longer, check that it is detecting
LN2 as soon as it is really flowing.

If you hear the click of the valve for a detector outlet open (it vibrates a
little when it is open too) but no LN2 is flowing into the detector, the line is
probably blocked. This can either be a kink of the line or ice in the line. In
the former case, straighten the line and in the later, stop filling, take the line
out of the detector, thaw it out, let the water run out, put it back and try again.

If the valves don’t open and the LEDs on the manifold control box don’t
change when the program runs, check the connection between the computer and
the manifold control box.

If the LEDs change from red to green, but the valves don’t open, check the
connection from the manifold control box to the manifolds.

If the system fills, but no e-mail is sent, check the syntax of the .mailrc file
in the autofill home directory. Comments are not allowed and the mail program
is a bit picky about the syntax. If that is OK, try sending mail from the system
using the mail command by hand and see what happens.

42

43

If the temperature on a PT100 suddenly starts oscillating, I have no idea
what that is, but it is a nuisance. The only thing I can suggest is to add that
outlet to the disabled list for emergency fills and keep a close eye on it, because
it won’t have emergency filling to fall back on.

If a PT100 value suddenly appears in the list for a channel which has no
PT100 connected, I don’t know what that is either. Just make sure that outlet
is in the disabled list.

If computer controlled filling doesn’t work, try turning the key to manual
and operating the switches.

If you get a PURGE TIMEOUT condition and no LN2 comes out of the
purge outlet, check there is LN2 in the vessel and the pressure is between 1.5
and 2 bar. If there is LN2 and no pressure, check that you don’t have a leak.

If you get an error message “ERROR: fill disabled on A1” (or another outlet)
this means that this outlet is disabled in the all fill disabled.sh file.

If you the LEDs on the manifold control boxes for the manifold are off (they
should normally either be red (closed) or green (open) but never off) check that
the manifolds have power and that the cables are connected. If they are OK, it
might be one of the two 0.5 Amp fuses inside the manifold control box. Note
that there are three fuses for this box and only one is accessible from the back.
The other two are inside. If any LEDs are lit at all, the one at the back is OK.
We have had ones inside the control box blow on a couple of occasions.

