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The Digital Gamma Finder (DGF)†

A CAMAC module with four complete spectroscopic 
channels.
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Each channel processes all events independently 
(Analogue part, ADC, FIFO, FPGA).

Logic generates a fast multiplicity signal, which can be 
used to decide if event is interesting.

Events can be validated by an external NIM signal.

→ This validation must be provided after the slow filter
time (i.e. ≈10 µs after fast trigger).

A single (AD2181) DSP processes validated events.

→ Events which are not validated are thrown away with 
zero dead time.

The DSP buffers data for CAMAC readout. The CAMAC 
protocol is handled by a fifth FPGA (the system FPGA).

† Sold by X-ray Instrument Associates, California (USA) - www.xia.com



DGF Firmware and Software

Xia provide us with images for the FPGA chips and 
executables for the DSP.

These are simply files which are either downloaded from 
their website or sent to us by e-mail.

Without this firmware and software the DGF is only 
capable of responding to a couple of very simple CAMAC 
write cycles.

The first thing to do, therefore, after switching on the 
CAMAC crate is to use those commands to "programme" 
the system FPGA. It is the system FPGA firmware which 
implements the full fast CAMAC level 1 protocol.

→ i.e. before the system code is uploaded to the DGF, it 
cannot understand CAMAC read commands and 
consequently prevents other CAMAC modules from 
working.

Once the system code is loaded, the filter/trigger FPGAs 
can be "programmed". We have different FPGA codes for 
each decimation. We can also have specialised FPGA 
codes for "unusual" detectors.

Finally, we programme the DSP. We can use the object 
code provided by Xia to link to code of our own if we want.

→ e.g. the pulse-shape analysis code for Miniball.



Timestamp synchronisation

If we have more than four detectors, we need use more 
than one DGF.

To find time differences between signals from different 
DGFs we simply substract the absolute values of their
timestamps.

→ Remember: the DGF has a counter which is incremented 
for each ADC sample (every 25 ns). The value of this 
counter (timestamp) for each trigger is written into the 
datastream.

Clearly the timestamps for different DGF modules must 
be synchronized.

→ We need to consider clock drift. Each DGF has an 
internal 40 MHz clock but if each module uses its own 
clock, imperfections in the clocks will cause them to 
drift apart.

→ The solution is to use just one clock and to distribute it 
to all modules.

→ Either we use the internal clock of one module and 
distribute it or we use an external clock.

→ Note that the revision D version of the DGF has a bug. 
Only a special external clock developped by George 
Pascovici here in Cologne will work.

→ Revision E version doesn’t have this bug. 



Busy-Synch loop

We need to be able to zero all the counters on the same 
clock tick when we start.

→ To achieve this, each DGF generates a BUSY signal 
when it is not acquiring, which is available on the 
front panel.

→ We generate the logical OR of these BUSY signals and 
fan the result back to the SYNCH input of each DGF.

→ When the last module starts, this signal goes from logic 
1 to logic 0 and we program the DGFs to zero their 
clocks when this happens.
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Trigger distribution

For some applications, it is necessary for one channel to 
trigger another.

→ For segmented detectors (e.g. Miniball) there is 
useful information ( e.g. mirror charges) on segments 
even if they have no net signal.

→ So we need to use the core as a trigger and always read 
out the segments.

As there are more than four signals, we have to make one 
DGF (with the core signal) trigger another (with a segment).

→ The DGF provides a bus on the back panel which can be 
used to connect the fast trigger and event trigger of 
adjacent modules.
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Validation

Validation is performed using the Global First Level 
Trigger (GFLT) together with external electronics which 
can use the Mult Out signal and possibly signals from other 
systems to decide if the event is interesting.
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Reading samples with the DGF

The most basic function we can perform with digital 
electronics is reading a series of samples.

The DGF can acquire traces without a trigger. The 
untriggered traces can be used to monitor a signal, 
determine the level of the baseline etc.

→ In this mode, we obtain up to 8192 samples are
separated by XWAIT × 25 ns.

It is also possible to acquire samples whenever a trigger 
occurs. This can be done in two ways:

→ Either we program the DGF to use its internal FIFO to 
store up to 4096 samples each separated by 25 ns (just 
over 100 µs). The parameter TRACELENGTH controls 
the number of samples to acquire. This mode is useful 
for studying the rising flank of the signals.

→ Or we get the DGF to acquire samples in real time. 
Then they are separated by (3 + XWAIT) × 25 ns. This 
mode is used to study the exponential decay of the 
signals and can be used to determine the τ constant of 
the preamplifier which the DGF needs to know.



Determining τ

The DGF needs to know the time constant τ of the 
preamplifer, which is given as the parameter 
PREAMPTAU.

We can determine τ by acquiring a signal and 
performing a least-squares fit.
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Alternatively, we can use the nominal 50 µs value as a 
starting point and then adjust τ to get the best peak 
shape and resolution in the resulting spectrum.

The latter method generally gives the best results.

This value is particularly important for high count rates,
because then, the probability of a second signal occuring
on the falling flank of a signal is higher.



The Filter/Trigger FPGA

The DGF has one FPGA per channel.

There is a fast branch, which applies a fast trapezoidal 
filter, used for pulse detection, the pileup inspector and 
the peak capture logic.

There is also a slow branch, which decimates the samples, 
applies a slow trapezoidal filter and performs most of the 
energy determination.
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The FPGA analyses all signals continuously, detecting 
peaks, filtering and performing pileup inspection.

When a peak is detected, if triggering is enabled on that 
channel, it sets a flag to indicate it has valid data. If 
validation is not required, it sends an interrupt to the DSP.
If validation is required, this interrupt is gated by the 
validation signal. When the DSP receives an interrupt, it 
reads out all the channels which have data.



The onboard MCA

Each channel of the DGF can work as a multichannel 
analyzer, acquiring a spectrum without help from the 
host computer with minimal dead time.

→ Additional onboard paged memory is used to store the 
spectra with 32768 bins each with 24 bits.

The host computer configures the DGF and then starts 
the acquisition and does not need to communicate again 
with the DGF until it tells it to stop acquiring.

After the measurement, the spectra can be downloaded 
to the host computer which doesn’t need to communicate 
with the DGF during the measurement.

Unfortunately, it is not possible to read the spectra 
without interrupting the measurement because a special 
DSP control task is needed to access the paged memory.

This kind of measurement is useful for experiments where 
just a single spectrum is needed from each detector and no 
γγ-coincidences are required.



Acquiring listmode data

The main use of the DGF is to acquire listmode data.

Conventional ADCs need to be read out for each event 
which means any delay in readout caused by latency 
problems in the host computer result in dead time.

→ A workaround is to use additional hardware to read 
out the ADCs and buffer the data and send it to the 
host computer (e.g. the FERA system used in Cologne).

→ Another solution is to use multi-hit ADCs. Such 
modules can buffer several ADC conversions which are 
then read out together.

More modern systems like the DGF package data into 
large buffers and are designed to be read out in buffered 
mode.

→ The DSP of the DGF uses 8 kwords of its internal 
memory as a buffer into which it can put hundreds of 
events (in the shortest data format).

→ The host computer only has to read out data occasionally
but then receives large packets of data. For most modern 
communications systems the handling of a large packet of 
data is more efficient than handling the same volume of 
data in small packets.



Data formats

Not all users require the same data. Some need only the 
energies and times of each γ ray which was validated. 
Others need additional data such as pulse shape 
information.

→ The DGF implements three different data formats to 
suit different applications.

All the formats start with a buffer header, which indicates 
from which module the data come, the format of the rest 
of the data and the 48-bit timestamp for the start of the 
buffer.

Word # Variable Description
0 BUF_NDATA Number of words in this buffer
1 BUF_MODUM Module number
2 BUF_FORMAT Format descriptor
3 BUF_TIMEHI Run start time, high word
4 BUF_TIMEMI Run start time, middle word
5 BUF_TIMELO Run start time, low word

Then for each event, there is an event header, which 
indicates which channels fired and gives the last 32 bits 

→ The 16 most significant bits have to be worked out 
knowing their value at the start of the buffer and that 
the timestamps always increase.

Word # Variable Description
0 EVT_PATTERN Hit pattern
1 EVT_TIMEHI Event time, high word
2 EVT_TIMELO Event time, low word

Then we have the data for each channel which fired (as 
specified by EVT_PATTERN) in the format specified 
by BUF_FORMAT. This data always contains the energies 
and times, but may also contain waveforms, times 
determined with a constant fraction algorithm or pulse-
shape analysis information.



Run tasks

The DGF provides several different run tasks for 
acquiring in different ways.

→ A long format with full pulse-shape data and possibly 
waveforms.

Word # Variable Description
0 CHAN_NDATA Number of words for this channel
1 CHAN_TRIGTIME Fast trigger time
2 CHAN_ENERGY Energy
3 CHAN_XIAPSA CFD time (0.1 ns bins)
4 CHAN_USERPSA User PSA value
5 CHAN_GSLTHI GSLT timestamp, high word
6 CHAN_GSLTMI GSLT timestamp, middle word
7 CHAN_GSLTLO GSLT timestamp, low word
8 CHAN_REALTIEMHI High word of real time

→ An intermediate format with just energy, time and and 
PSA data.

Word # Variable Description
1 CHAN_TRIGTIME Fast trigger time
2 CHAN_ENERGY Energy
3 CHAN_XIAPSA CFD time (0.1 ns bins)
4 CHAN_USERPSA User PSA value

→ A short format with just energy and time.

Word # Variable Description
1 CHAN_TRIGTIME Fast trigger time
2 CHAN_ENERGY Energy

There is also a run task for the acquisition with only the 
MCA. (i.e. without any list mode data.)

→ Note, however, that MCA spectra can be acquired in 
parallel with list mode data in all the other run tasks.

Run tasks are performed by setting up the DSP 
parameters, then writing a bit to the control-status 
register and the waiting for the DGF to reset that bit 
when it has finished acquiring.



Control tasks

In addition to the run tasks (actual acquisition), it is often 
necessary to perform other tasks to control specific parts 
of the hardware. This is done via control tasks. These tasks 
include:

→ Programming the gain and offset DACs. (i.e. we 
copy the values from DSP memory to the DACs).

→ Setting the filter parameters in the FPGA.

→ Ramping the offset DAC to find the optimum value.

→ Acquiring untriggered signals.

→ Reading/writing the paged memory used to store the 
MCA histograms. Note that it is only possible to 
access one 4K page at a time. So eight control tasks 
are needed to read a whole MCA spectrum for one 
channel.

These tasks are performed in a similar way to run tasks
by setting the DSP parameters and writing a bit in the 
control-status register and waiting for the DGF to reset 
that bit.



User DSP code

The DGF allows the user to write code for the DSP 
which is called for each event. This code can 
be used to perform application-specific tasks. E.g., 
with Miniball user DSP code†was written to perform 
pulse-shape analysis.

The user provides five routines:

→  UserBegin -  called when the DGF is initialised.

→  UserRunInit -  called when a run is started.

→  UserChannel -  called for each channel which is hit.

→  UserEvent -  called for each each event.

→  UserRunFinish -  called when a run is ended.

UserBegin is always called, but the others are only called 
if a flag is set.

The code has to be written in ADSP-2181 assembler:

UserBegin:

  ar=^RTBuf;              /* UserOut[0]=address of RiseTimeBuffer */

  ar=ar+0x4000;

  dm(  UserOut)=ar;       /* address as seen from the host        */

  ar=%RTBuf;          

  dm(  UserOut+1)=ar;     /* UserOut[1]=length  of RiseTimeBuffer */

                          /* To communicate address               */

                          /* and size of buffer to host.          */

  ar=^PolyBuf;            /* UserOut[2]=address of PolygonBuffer  */

  ar=ar+0x4000;

  dm(  UserOut+2)=ar;     /* address as seen from the host        */

  ar=%PolyBuf;          

  dm(  UserOut+3)=ar;     /* UserOut[3]=length  of PolygonBuffer  */

                          /* To communicate address               */

                          /* and size of buffer to host.          */

JUMP UserBeginReturn;     

† Written by Martin Lauer, Max Planck Institut, Heidelberg.


