
The Digital Gamma Finder (DGF)

DSP

System FPGA

Camac

clock distributionFirewire
(not yet

implemented)
One of four channels

Inputs

for 4

channels

Analog partDigital part

2 cm

FPGA

FIFO

40 MHz
sampling ADC

40 MHz
sampling ADC

Amplifier

DACs for
gain and offset

Nyquist
filter

Impedance
matching

The Digital Gamma Finder (DGF)†

A CAMAC module with four complete spectroscopic
channels.

Signal Conditioning, ADC, Long
FIFO & Digitization Rate Real Time

Digital Signal Processing Unit

Signal Conditioning, ADC, Long
FIFO & Digitization Rate Real Time

Digital Signal Processing Unit

Signal Conditioning, ADC, Long
FIFO & Digitization Rate Real Time

Digital Signal Processing Unit

ANALOG

SIGNAL

CONDITIONING

ADC FPGA

Long FIFO

16
 b

it
 t

ri
gg

er
 b

us

DMA

To Host

Computer

[CAMAC

Dataway]

CAMAC

INTERFACE

AD2181 DSP

Event Rate Digital

Signal Processing

ACQUISITION

CONTROL LOGIC

[Timing &

Multiplicity]

T&M I/O

Lines (7)
Trigger &

Clock

Lines (4)

Input #0

Input #1

Input #2

Input #3

Front Panel Back Panel

Each channel processes all events independently
(Analogue part, ADC, FIFO, FPGA).

Logic generates a fast multiplicity signal, which can be
used to decide if event is interesting.

Events can be validated by an external NIM signal.

→ This validation must be provided after the slow filter
time (i.e. ≈10 µs after fast trigger).

A single (AD2181) DSP processes validated events.

→ Events which are not validated are thrown away with
zero dead time.

The DSP buffers data for CAMAC readout. The CAMAC
protocol is handled by a fifth FPGA (the system FPGA).

† Sold by X-ray Instrument Associates, California (USA) - www.xia.com

DGF Firmware and Software

Xia provide us with images for the FPGA chips and
executables for the DSP.

These are simply files which are either downloaded from
their website or sent to us by e-mail.

Without this firmware and software the DGF is only
capable of responding to a couple of very simple CAMAC
write cycles.

The first thing to do, therefore, after switching on the
CAMAC crate is to use those commands to "programme"
the system FPGA. It is the system FPGA firmware which
implements the full fast CAMAC level 1 protocol.

→ i.e. before the system code is uploaded to the DGF, it
cannot understand CAMAC read commands and
consequently prevents other CAMAC modules from
working.

Once the system code is loaded, the filter/trigger FPGAs
can be "programmed". We have different FPGA codes for
each decimation. We can also have specialised FPGA
codes for "unusual" detectors.

Finally, we programme the DSP. We can use the object
code provided by Xia to link to code of our own if we want.

→ e.g. the pulse-shape analysis code for Miniball.

Timestamp synchronisation

If we have more than four detectors, we need use more
than one DGF.

To find time differences between signals from different
DGFs we simply substract the absolute values of their
timestamps.

→ Remember: the DGF has a counter which is incremented
for each ADC sample (every 25 ns). The value of this
counter (timestamp) for each trigger is written into the
datastream.

Clearly the timestamps for different DGF modules must
be synchronized.

→ We need to consider clock drift. Each DGF has an
internal 40 MHz clock but if each module uses its own
clock, imperfections in the clocks will cause them to
drift apart.

→ The solution is to use just one clock and to distribute it
to all modules.

→ Either we use the internal clock of one module and
distribute it or we use an external clock.

→ Note that the revision D version of the DGF has a bug.
Only a special external clock developped by George
Pascovici here in Cologne will work.

→ Revision E version doesn’t have this bug.

Busy-Synch loop

We need to be able to zero all the counters on the same
clock tick when we start.

→ To achieve this, each DGF generates a BUSY signal
when it is not acquiring, which is available on the
front panel.

→ We generate the logical OR of these BUSY signals and
fan the result back to the SYNCH input of each DGF.

→ When the last module starts, this signal goes from logic
1 to logic 0 and we program the DGFs to zero their
clocks when this happens.

Synch

GSLT

GFLT

Busy

Trigger

Mult Out

Mult In

Input #3

Input #2

Input #1

Input #0

Synch

GSLT

GFLT

Busy

Trigger

Mult Out

Mult In

Input #3

Input #2

Input #1

Input #0

Synch

GSLT

GFLT

Busy

Trigger

Mult Out

Mult In

Input #3

Input #2

Input #1

Input #0

OR

Trigger distribution

For some applications, it is necessary for one channel to
trigger another.

→ For segmented detectors (e.g. Miniball) there is
useful information (e.g. mirror charges) on segments
even if they have no net signal.

→ So we need to use the core as a trigger and always read
out the segments.

As there are more than four signals, we have to make one
DGF (with the core signal) trigger another (with a segment).

→ The DGF provides a bus on the back panel which can be
used to connect the fast trigger and event trigger of
adjacent modules.

ADCFiPPI Signal input

OR

Module 1

Module 2

Fa
st

 tr
ig

ge
r

bu
s

E
ve

nt
 tr

ig
ge

r
bu

s

Validation

Validation is performed using the Global First Level
Trigger (GFLT) together with external electronics which
can use the Mult Out signal and possibly signals from other
systems to decide if the event is interesting.

Synch

GSLT

GFLT

Busy

Trigger

Mult Out

Mult In

Input #3

Input #2

Input #1

Input #0

Synch

GSLT

GFLT

Busy

Trigger

Mult Out

Mult In

Input #3

Input #2

Input #1

Input #0

Synch

GSLT

GFLT

Busy

Trigger

Mult Out

Mult In

Input #3

Input #2

Input #1

Input #0

COINC

UNITOther detector
electronics

The GFLT has to be applied at the time when the DSP
receives an interrupt from the FPGA (DSP trigger) at
the end of the slow filter.

GFLT

Slow filter

Mult Out

0 5 10 15 20 µs

Reading samples with the DGF

The most basic function we can perform with digital
electronics is reading a series of samples.

The DGF can acquire traces without a trigger. The
untriggered traces can be used to monitor a signal,
determine the level of the baseline etc.

→ In this mode, we obtain up to 8192 samples are
separated by XWAIT × 25 ns.

It is also possible to acquire samples whenever a trigger
occurs. This can be done in two ways:

→ Either we program the DGF to use its internal FIFO to
store up to 4096 samples each separated by 25 ns (just
over 100 µs). The parameter TRACELENGTH controls
the number of samples to acquire. This mode is useful
for studying the rising flank of the signals.

→ Or we get the DGF to acquire samples in real time.
Then they are separated by (3 + XWAIT) × 25 ns. This
mode is used to study the exponential decay of the
signals and can be used to determine the τ constant of
the preamplifier which the DGF needs to know.

Determining τ

The DGF needs to know the time constant τ of the
preamplifer, which is given as the parameter
PREAMPTAU.

We can determine τ by acquiring a signal and
performing a least-squares fit.

Data

Fit τ = 52.5 µs

0 25 50 75 100

4500

5000

5500

6000

6500

A
m

pl
it

ud
e

Time [µs]

0 25 50 75 100

4500

5000

5500

6000

6500

A
m

pl
it

ud
e

Time [µs]

Alternatively, we can use the nominal 50 µs value as a
starting point and then adjust τ to get the best peak
shape and resolution in the resulting spectrum.

The latter method generally gives the best results.

This value is particularly important for high count rates,
because then, the probability of a second signal occuring
on the falling flank of a signal is higher.

The Filter/Trigger FPGA

The DGF has one FPGA per channel.

There is a fast branch, which applies a fast trapezoidal
filter, used for pulse detection, the pileup inspector and
the peak capture logic.

There is also a slow branch, which decimates the samples,
applies a slow trapezoidal filter and performs most of the
energy determination.

OFFSET DAC GAIN DAC
LENGTH&GAP DELAY THRESHOLD INTERVALS CAPTURE MASK

FAST FILTER
PULSE

DETECTOR
PILEUP

INSPECTOR

PEAK
CAPTURE

LOGIC

FIFO
HALT LOGIC

DECIMATOR SLOW FILTER

OUTPUT
BUFFERS

DECIMATION LENGTH&GAP

Enable From ACQ

CONTROL
LOGIC

To FAST

TRIGGER
Output

FROM

ADC

TO ASC
DACS

To FIFO

16
 B

it
L

oc
al

 B
us

PARAMETER REGISTERS

PARAMETER REGISTERS

The FPGA analyses all signals continuously, detecting
peaks, filtering and performing pileup inspection.

When a peak is detected, if triggering is enabled on that
channel, it sets a flag to indicate it has valid data. If
validation is not required, it sends an interrupt to the DSP.
If validation is required, this interrupt is gated by the
validation signal. When the DSP receives an interrupt, it
reads out all the channels which have data.

The onboard MCA

Each channel of the DGF can work as a multichannel
analyzer, acquiring a spectrum without help from the
host computer with minimal dead time.

→ Additional onboard paged memory is used to store the
spectra with 32768 bins each with 24 bits.

The host computer configures the DGF and then starts
the acquisition and does not need to communicate again
with the DGF until it tells it to stop acquiring.

After the measurement, the spectra can be downloaded
to the host computer which doesn’t need to communicate
with the DGF during the measurement.

Unfortunately, it is not possible to read the spectra
without interrupting the measurement because a special
DSP control task is needed to access the paged memory.

This kind of measurement is useful for experiments where
just a single spectrum is needed from each detector and no
γγ-coincidences are required.

Acquiring listmode data

The main use of the DGF is to acquire listmode data.

Conventional ADCs need to be read out for each event
which means any delay in readout caused by latency
problems in the host computer result in dead time.

→ A workaround is to use additional hardware to read
out the ADCs and buffer the data and send it to the
host computer (e.g. the FERA system used in Cologne).

→ Another solution is to use multi-hit ADCs. Such
modules can buffer several ADC conversions which are
then read out together.

More modern systems like the DGF package data into
large buffers and are designed to be read out in buffered
mode.

→ The DSP of the DGF uses 8 kwords of its internal
memory as a buffer into which it can put hundreds of
events (in the shortest data format).

→ The host computer only has to read out data occasionally
but then receives large packets of data. For most modern
communications systems the handling of a large packet of
data is more efficient than handling the same volume of
data in small packets.

Data formats

Not all users require the same data. Some need only the
energies and times of each γ ray which was validated.
Others need additional data such as pulse shape
information.

→ The DGF implements three different data formats to
suit different applications.

All the formats start with a buffer header, which indicates
from which module the data come, the format of the rest
of the data and the 48-bit timestamp for the start of the
buffer.

Word # Variable Description
0 BUF_NDATA Number of words in this buffer
1 BUF_MODUM Module number
2 BUF_FORMAT Format descriptor
3 BUF_TIMEHI Run start time, high word
4 BUF_TIMEMI Run start time, middle word
5 BUF_TIMELO Run start time, low word

Then for each event, there is an event header, which
indicates which channels fired and gives the last 32 bits

→ The 16 most significant bits have to be worked out
knowing their value at the start of the buffer and that
the timestamps always increase.

Word # Variable Description
0 EVT_PATTERN Hit pattern
1 EVT_TIMEHI Event time, high word
2 EVT_TIMELO Event time, low word

Then we have the data for each channel which fired (as
specified by EVT_PATTERN) in the format specified
by BUF_FORMAT. This data always contains the energies
and times, but may also contain waveforms, times
determined with a constant fraction algorithm or pulse-
shape analysis information.

Run tasks

The DGF provides several different run tasks for
acquiring in different ways.

→ A long format with full pulse-shape data and possibly
waveforms.

Word # Variable Description
0 CHAN_NDATA Number of words for this channel
1 CHAN_TRIGTIME Fast trigger time
2 CHAN_ENERGY Energy
3 CHAN_XIAPSA CFD time (0.1 ns bins)
4 CHAN_USERPSA User PSA value
5 CHAN_GSLTHI GSLT timestamp, high word
6 CHAN_GSLTMI GSLT timestamp, middle word
7 CHAN_GSLTLO GSLT timestamp, low word
8 CHAN_REALTIEMHI High word of real time

→ An intermediate format with just energy, time and and
PSA data.

Word # Variable Description
1 CHAN_TRIGTIME Fast trigger time
2 CHAN_ENERGY Energy
3 CHAN_XIAPSA CFD time (0.1 ns bins)
4 CHAN_USERPSA User PSA value

→ A short format with just energy and time.

Word # Variable Description
1 CHAN_TRIGTIME Fast trigger time
2 CHAN_ENERGY Energy

There is also a run task for the acquisition with only the
MCA. (i.e. without any list mode data.)

→ Note, however, that MCA spectra can be acquired in
parallel with list mode data in all the other run tasks.

Run tasks are performed by setting up the DSP
parameters, then writing a bit to the control-status
register and the waiting for the DGF to reset that bit
when it has finished acquiring.

Control tasks

In addition to the run tasks (actual acquisition), it is often
necessary to perform other tasks to control specific parts
of the hardware. This is done via control tasks. These tasks
include:

→ Programming the gain and offset DACs. (i.e. we
copy the values from DSP memory to the DACs).

→ Setting the filter parameters in the FPGA.

→ Ramping the offset DAC to find the optimum value.

→ Acquiring untriggered signals.

→ Reading/writing the paged memory used to store the
MCA histograms. Note that it is only possible to
access one 4K page at a time. So eight control tasks
are needed to read a whole MCA spectrum for one
channel.

These tasks are performed in a similar way to run tasks
by setting the DSP parameters and writing a bit in the
control-status register and waiting for the DGF to reset
that bit.

User DSP code

The DGF allows the user to write code for the DSP
which is called for each event. This code can
be used to perform application-specific tasks. E.g.,
with Miniball user DSP code†was written to perform
pulse-shape analysis.

The user provides five routines:

→ UserBegin - called when the DGF is initialised.

→ UserRunInit - called when a run is started.

→ UserChannel - called for each channel which is hit.

→ UserEvent - called for each each event.

→ UserRunFinish - called when a run is ended.

UserBegin is always called, but the others are only called
if a flag is set.

The code has to be written in ADSP-2181 assembler:

UserBegin:

 ar=^RTBuf; /* UserOut[0]=address of RiseTimeBuffer */

 ar=ar+0x4000;

 dm(UserOut)=ar; /* address as seen from the host */

 ar=%RTBuf;

 dm(UserOut+1)=ar; /* UserOut[1]=length of RiseTimeBuffer */

 /* To communicate address */

 /* and size of buffer to host. */

 ar=^PolyBuf; /* UserOut[2]=address of PolygonBuffer */

 ar=ar+0x4000;

 dm(UserOut+2)=ar; /* address as seen from the host */

 ar=%PolyBuf;

 dm(UserOut+3)=ar; /* UserOut[3]=length of PolygonBuffer */

 /* To communicate address */

 /* and size of buffer to host. */

JUMP UserBeginReturn;

† Written by Martin Lauer, Max Planck Institut, Heidelberg.

