
High voltage control software for Miniball (INTERNALS)

This document only makes sense in conjunction with the HV control source code.

You should only need to refer to this documentation if you want to modify the HV control

software or understand how its innards work.

Normal users should refer to the users’ manual instead.

1Nigel Warr March 2007

1

Contents

1 Introduction 4

2 The server hv server 5

2.1 hv server.c . 5
2.1.1 main . 5
2.1.2 signal handler . 6
2.1.3 exit handler . 6
2.1.4 write empty data file . 6

2.2 master.c . 6
2.2.1 master check for changes . 6
2.2.2 master read file . 6
2.2.3 master parse sysname . 6
2.2.4 master parse ip . 7
2.2.5 master parse username . 7
2.2.6 master parse password . 7
2.2.7 master parse level . 7

2.3 mainframe.c . 7
2.3.1 mainframe connect . 7
2.3.2 mainframe disconnect . 7
2.3.3 mainframe set voltage . 7
2.3.4 mainframe enable channel . 8
2.3.5 mainframe disable channel . 8
2.3.6 mainframe get values . 8
2.3.7 mainframe set channel . 8
2.3.8 mainframe set values . 8
2.3.9 mainframe set limits . 8
2.3.10 mainframe calculate max safe voltage . 8
2.3.11 mainframe check values . 8
2.3.12 mainframe analyse status . 8
2.3.13 mainframe call trip script . 8
2.3.14 mainframe call warn script . 8

2.4 limits.c . 8
2.4.1 limits check for changes . 8
2.4.2 limits read file . 9
2.4.3 limits parse channel . 9

2.5 channel.c . 9
2.5.1 channel check for command . 9
2.5.2 channel read line . 9
2.5.3 channel kill . 9
2.5.4 channel enable . 9
2.5.5 channel disable . 9
2.5.6 channel voltage . 9
2.5.7 channel ramp up . 9
2.5.8 channel update mainframe . 10

2.6 logmessage.c . 10
2.6.1 logmessage . 10
2.6.2 logsetlevel . 10

2.7 parse cmd.c . 10

3 The control program hv control 11

3.1 hv control.c . 11
3.1.1 main . 11
3.1.2 create main . 11
3.1.3 server change voltage . 12
3.1.4 server enable . 12
3.1.5 server disable . 12
3.1.6 ramp up all . 12
3.1.7 ramp down all query . 12
3.1.8 ramp down all confirmed . 12
3.1.9 delete callback . 12
3.1.10 idle handler . 12

2

3.1.11 read channel data . 12
3.1.12 parse data . 12
3.1.13 parse time . 12

3.2 channel widget.c . 12
3.2.1 channel widget get type . 13
3.2.2 channel widget class init . 13
3.2.3 channel widget widget new . 13
3.2.4 channel widget destroy . 13
3.2.5 channel change demand voltage . 13
3.2.6 channel enable . 13
3.2.7 channel disable query . 13
3.2.8 channel disable confirmed . 13
3.2.9 channel widget set name . 13
3.2.10 channel widget set parameters . 14
3.2.11 channel widget set colour . 14
3.2.12 channel widget set to max voltage . 14
3.2.13 channel widget calculate max safe voltage . 14

4 The hv generate html program 15

4.1 hv generate html.c . 15
4.1.1 main . 15
4.1.2 do header . 15
4.1.3 do body . 15
4.1.4 do header . 15
4.1.5 parse data . 15
4.1.6 treat channel status . 15
4.1.7 treat board status . 15
4.1.8 parse time . 15

5 The hv kill script 16

6 The hv unkill script 17

7 The hv enable script 18

8 The hv disable script 19

9 The hv set voltage script 20

10 The hv ramp up script 21

3

1 Introduction

The software is divided up into two main programs (hv server and hv control) and a few small programs
and scripts.

The server runs in background, logging to the system log and writing periodically to a status file. It
constantly monitors the master configuration file (which tells it which mainframe to connect to) and the
limits configuration file, which sets the names and limits for each channel, and re-reads them if the files
change on disk. It also reads commands from a pipe.

It is possible to send commands directly to the pipe from a shell, script or program. Any user can write
to the pipe. The server will then decide whether to obey those commands based on the policy. The policy
limits the maximum voltage to that set in the limits file (which should be world readable, but should not
be writable by normal users). This file also determines the ramp up and ramp down rates, as well as the
conditions for a channel to trip. Furthermore, there is a hardcoded limit to the maximum increase in voltage
in a single step, which is dependent on the measured voltage.

It is intended for all the security to be implemented in the server, so that normal users cannot make
unsafe changes to the voltage.

The control program is a GUI, which monitors the status file produced by the server and sends commands
to the command pipe, whenever the user clicks or slides.

The scripts send commands directly to the command pipe, making it possible to make changes directly
from the command line, which is useful for slow connections (e.g. when the server is in CERN).

4

2 The server hv server

The server consists of the following files:

• hv server.c - main entry point

• master.c - code to read master configuration file

• mainframe.c - code to interface with HV mainframe

• limits.c - code to read limits configuration file

• channel.c - code to configure channels

• logmessage.c - code for logging to system log file

• parse cmd.c - code to parse command lines

It is designed to run in background mode, for example, started at system startup. It does not normally
write any output to the screen, but instead uses the system log file.

These are normally linked to libhscaenet.so and libcaenhvwrapper.so provided by CAEN, or for the fake
server (which simulates a high voltage mainframe) fake libcaenet.c is used instead.

The server continually watches the master and limits configuration files. If the modification date of one
of these files changes, the file is read again and the modifications are applied at once.

The server also reads from a named command pipe, which can be use to send commands to the server.
It is, in principle, possible to send commands directly to the server from the command pipe, without using
the graphical user interface.

The server continually writes the current values to a file.

If a channel gets a warning, a script is called. If a channel trips, a different script is called. These scripts
may be used to perform any actions the user deems appropriate.

2.1 hv server.c

This file the main entry point to the program. It has just two functions:

• int main(int argc, char *argv);

• void signal handler(int signum);

• void exit handler();

• int write empty data file();

2.1.1 main

This is the main entry point. First we log that we are starting to the system logger. Then we zero the
structure containing the channel data. Next we set up the signal handler, so that it is called for all signals
except SIGKILL (which cannot be trapped) and SIGHUP, SIGWINCH and SIGCHLD, which are ignored.
Then we set up the exit handler, which is called when the program exits and enter the main loop. The main
loop is broken out of, if a signal arrives which causes the signal handler to be called. This calls exit which
in turn causes the exit handler to be called and exits the program.

The main loop does the following operations over and over, with a small sleep to prevent overuse of
processor time:

• Check the master configuration file for changes by calling master check for changes.

• Check if we need to connect to the mainframe by calling mainframe connect.

• Get the values from the mainframe by calling mainframe get values

• Check the limits configuration file for changes by calling limits check for changes

• Check for commands on the command pipe by calling channel check for command

5

2.1.2 signal handler

This function is the signal handler which is called for any signal except SIGHUP, SIGWINCH, SIGCHLD
and of course, SIGKILL (which can’t be trapped).

It logs the event to the system log, and exits, which causes the exit handler to be called. The exit handler
disconnects from the mainframe.

2.1.3 exit handler

This function is called whenever the program exits via the exit function. Since the signal handler calls
exit, this means it is called for any signal except SIGHUP, SIGWINCH, SIGCHLD and of course, SIGKILL
(which can’t be trapped).

It logs the event and disconnects from the mainframe. It also writes an empty data file by calling
write empty data file.

2.1.4 write empty data file

This function is called when we start and when we stop. It writes a data file with just a timestamp and no
other data, overwriting whatever was there before. Note that this empty data file is overwritten as soon as
we read genuine values from the HV mainframe.

2.2 master.c

The code in this file is used to monitor and read the master configuration file. There are two main functions:

• int master check for changes();

• int master read file();

2.2.1 master check for changes

Each time this function is called, it checks the modification time of the master configuration file. If this has
changed since the last time, the function was called, it calls master read file to read it. N.B. the very first
time the function is called, after the program is started, it always does this. It is called on each iteration of
the main loop.

2.2.2 master read file

This function opens the master configuration file and reads it line by line, using the parse cmd functions to
parse it.

Then there are five callback functions, which are called when master read file finds the corresponding
entry in the master configuration file:

• master parse sysname

• master parse ip

• master parse username

• master parse password

• master parse loglevel

2.2.3 master parse sysname

This function is called from master read file via parse cmd line if a SYSNAME entry is found in the master
configuration file. It stores the new system name and disconnects from the mainframe. On the next iteration
of the main loop, mainframe connect will reconnect using the new name.

6

2.2.4 master parse ip

This function is called from master read file via parse cmd line if an IP entry is found in the master config-
uration file. It stores the IP address and disconnects from the mainframe. On the next iteration of the main
loop, mainframe connect will reconnect using the new IP address.

2.2.5 master parse username

This function is called from master read file via parse cmd line if a USERNAME entry is found in the master
configuration file. It stores the username and disconnects from the mainframe. On the next iteration of the
main loop, mainframe connect will reconnect using the new username.

2.2.6 master parse password

This function is called from master read file via parse cmd line if a PASSWORD entry is found in the master
configuration file. It stores the password and disconnects from the mainframe. On the next iteration of the
main loop, mainframe connect will reconnect using the new password.

2.2.7 master parse level

This function is called from master read file via parse cmd line if a LEVEL entry is found in the master
configuration file. It calls logsetlevel to set the new logging level.

2.3 mainframe.c

This file contains the code to interface to the high voltage mainframe. The functions are:

• int mainframe connect(char *ip, char *username, char *password);

• int mainframe disconnect();

• int mainframe set voltage(int channel, float request voltage);

• int mainframe enable channel(int channel);

• int mainframe disable channel(int channel);

• int mainframe get values();

• int mainframe set channel(int channel);

• int mainframe set values();

• int mainframe set limits();

• float mainframe calculate max safe voltage(float measured voltage, float max voltage);

• int mainframe check values(hv channel *hv, int n);

• int mainframe analyse status(int n, int old status, int new status);

• int mainframe call trip script(int n, int old status, int new status);

• int mainframe call warn script(int n, int old status, int new status);

2.3.1 mainframe connect

If the program is already connected to the mainframe, this function does nothing, otherwise it attempts to
establish a new connection. It is called on each iteration of the main loop.

2.3.2 mainframe disconnect

If the program is not connected to the mainframe, this function does nothing, otherwise it attempts to break
the connection.

2.3.3 mainframe set voltage

Set the request voltage for a given channel. It sets a value and calls mainframe set values to do the work.

7

2.3.4 mainframe enable channel

Enable a given channel. It sets a flag and calls mainframe set values to do the work.

2.3.5 mainframe disable channel

Disable a given channel. It sets a flag and calls mainframe set values to do the work.

2.3.6 mainframe get values

This function reads all the parameters from the mainframe and then writes them to a file, so that the humans
and programs alike can read the current high voltage status.

2.3.7 mainframe set channel

This function sets the values for a given channel.

2.3.8 mainframe set values

This function checks that the values for each channel are acceptable and then sets them for all channels on
the system.

2.3.9 mainframe set limits

This function checks that the limits for each channel are acceptable and then sets them for all channels on
the system.

2.3.10 mainframe calculate max safe voltage

This function calculates the maximum voltage it is safe to ramp to in a single step. We consider two regimes,
allowing greater steps at lower voltages than higher ones.

2.3.11 mainframe check values

This function checks that the values requested by the user are acceptable. It is here where we enforce the
policies of ramp up and down rates, maximum step at a given voltage etc.

2.3.12 mainframe analyse status

This function analyses the status flag and if warning bits are set, it calls the warning script and if error bits
are set it calls the trip script. It also logs to the system logger.

2.3.13 mainframe call trip script

This function calls the trip script passing the channel number, name of channel, demand voltage, measured
voltage, measured current, current limit and current time on the command line.

2.3.14 mainframe call warn script

This function calls the warning script passing the channel number, name of channel, demand voltage, mea-
sured voltage, measured current, current limit and current time on the command line.

2.4 limits.c

This file contains the code for watching the limits configuration file and reading it if it changes. It has the
functions:

• int limits check for changes();

• int limits read file();

• int limits parse channel(int argc, char **argv);

2.4.1 limits check for changes

This function is called from the main loop on each iteration and it checks to see if the modification time of
the limits configuration file has changed since the last time. If so (and always on the first iteration), it calls
limits read file to read the file.

8

2.4.2 limits read file

This function reads the limits configuration file and uses parse cmd line to parse each line. It only under-
stands one command “CHANNEL” and if that is found, it calls limits parse channel.

2.4.3 limits parse channel

This is called for each channel line found in the limits file. It stores the values for that channel and marks
it as being configured.

2.5 channel.c

The code in this file reads commands from the command pipe and parses them, calling the appropriate
callbacks.

• int channel check for command();

• int channel read line(FILE *fp);

• int channel kill(int argc, char **argv);

• int channel enable(int argc, char **argv);

• int channel disable(int argc, char **argv);

• int channel voltage(int argc, char **argv);

• int channel ramp up(int argc, char **argv);

• int channel update mainframe();

2.5.1 channel check for command

This function checks the named pipe for a command, and if there is one, it calls channel read line to read it.

2.5.2 channel read line

This function reads a single line from the pipe and uses parse cmd line to parse it. It accepts five commands,
which are handled by the appropriate functions.

2.5.3 channel kill

This function is called by parse cmd line from channel read line if the kill command is sent to the command
pipe. It causes all channels to be ramped down safely. Any arguments on the command line are logged as
the reason for the kill, but do not influence the way the command works.

2.5.4 channel enable

This function is called by parse cmd line from channel read line if the enable command is sent to the com-
mand pipe. It turns on a given channel.

2.5.5 channel disable

This function is called by parse cmd line from channel read line if the disable command is sent to the
command pipe. It turns off a given channel.

2.5.6 channel voltage

This function is called by parse cmd line from channel read line if the voltage command is sent to the
command pipe. It sets the voltage of a given channel.

2.5.7 channel ramp up

This function is called by parse cmd line from channel read line if the ramp up command is sent to the
command pipe. It tells a given channel to ramp up to the highest voltage which is allowed by the policy.
Or, if the argument is “-a”, it ramps all enabled channels up.

9

2.5.8 channel update mainframe

This function does nothing, if parsing a command has changed nothing, but if it has, it uses main-

frame set values to set the values on the mainframe.

2.6 logmessage.c

This code is used to log messages to the system logger. There are two functions:

• int logmessage(int level, char *fmt, . . .);

• int logsetlevel(int level);

The symbolic values for log levels, as well as the prototypes for the functions are defined in logmessage.h.

2.6.1 logmessage

This function sends the text of the message to the system logger (syslog) if the level is lower than the current
level. The second and remaining parameters work like printf style functions with a format and variable
parameters. E.g.

logmessage(LOG_WARN, "Some text with floating point value f=%f", myfloat);

2.6.2 logsetlevel

This function sets the current level of logging. The higher it is, the less logging. The default is LOGLEV WARN

which means only warnings and fatal errors are logged. Informational and debugging messages are not logged.

2.7 parse cmd.c

This code is used to parse command lines and call the appropriate functions to handle those commands. It
is quite generic and is reused from several other programs.

The file parse cmd.h defines a type parse command, which consists of a key string and a pointer to a
function. The most important function is parse cmd line which takes two arguments. The first is a string
containing the command line, to be parsed and the second is an array of parse command items, the last one
having NULL pointers for both key and function.

This function breaks up the command line into arguments (like argc, argv in C) finds the command by
comparing each key in the array with argv[0] and if it finds a match, it calls the corresponding function.

The functions all have the same form as the main function in C. i.e.

int mycommand(int argc, char **argv);

10

3 The control program hv control

This program is a graphical user interface to the server. It sends commands to the pipe which is read by the
server and reads from the status file, which is periodically written by the server.

The files for this program are:

• hv control.c

• channel widget.c

• parse cmd.c

Note that parse cmd.c is the same command line parsing code used by the server (see section 2.7).

3.1 hv control.c

This is the main part of the GUI. It consists of the following functions:

• int main(int argc, char **argv):

• void create main();

• gboolean idle handler(gpointer data);

• gint read channel data(gchar *filename);

• int parse data(int argc, char **argv);

• int parse time(int argc, char **argv);

• void ramp up all(gpointer user data);

• void ramp down all confirmed(GtkWidget *dialog, gint response, gpointer user data);

• void ramp down all query(gpointer user data);

• gboolean delete callback(GtkWidget *widget, GdkEvent *event, gpointer user data);

3.1.1 main

This function is the main entry point to the program. It performs the following tasks:

• initialise gtk (gtk init)

• initialise internationalisation (setlocale, bindtextdomain, textdomain)

• call create main to create the main window

• setup the idle handler

• enter the gtk main loop (gtk main).

3.1.2 create main

This function creates the main window. This is a top level window, with a scrolled window in it. Inside that
is a vertical box with a viewport. Within that is a table, which contains a grid of channel widgets and a
horizontal box containing three buttons: ramp up, ramp down and quit.

Pressing the ramp up button causes the ramp up all function to be called. Pressing the ramp down
button causes the ramp down all query function to be called, while pressing quit causes the delete callback

function to be called.

Three signals of the channel widgets are connected to functions:

• void server change voltage(gpointer user data);

• void server enable(gpointer user data);

• void server disable(gpointer user data);

11

3.1.3 server change voltage

This is called if the user changes the voltage on a channel widget, by moving the slider. It sends the
appropriate command to the server.

3.1.4 server enable

This is called if the user turns on a channel on a channel widget, by clicking on “ON”. It sends the appropriate
command to the server.

3.1.5 server disable

This is called if the user turns off a channel on a channel widget, by clicking on “OFF”. It sends the
appropriate command to the server.

3.1.6 ramp up all

This function is called when the ramp up button is clicked. It calls channel set to max voltage for each
channel, to ramp each enabled channel up as much as is safe to do.

3.1.7 ramp down all query

This function creates a dialog box asking the user if he/she really wants to ramp down all channels. Clicking
OK causes ramp down all confirmed to be called.

3.1.8 ramp down all confirmed

Destroy the dialog box, that was created by ramp down all query, for which this function is a callback. Then
send the KILL command to the server.

3.1.9 delete callback

This function is called if the user clicks on the quit button, or deletes the window. It simply exits the
program.

3.1.10 idle handler

This function is called whenever the application has nothing better to do. It checks the status file produced
by the server and if it has changed, reads it again by calling read channel data.

3.1.11 read channel data

This function uses parse cmd line to parse the channel data file generated by the server. There are two
commands accepted: DATA and TIME. For the former, it calls parse data and the for the latter parse time.

3.1.12 parse data

This function is called by parse cmd line from read channel data when a DATA line is found. It obtains all
the various parameters for the channel and calls channel widget set parameters to store them in the channel
widget for that channel.

3.1.13 parse time

This function doesn’t do anything at all. It is called by parse cmd line from read channel data when a TIME
line is found. This merely gives the timestamp, when the server wrote the data. In principle, we could check
if the timestamp is recent or not, but we don’t.

3.2 channel widget.c

This file contains the code for the widget for a single channel. It is implemented as a gtk class. It contains
four standard gtk class functions:

• GType channel widget get type(void);

• void channel widget class init(ChannelWidgetClass *myclass);

• GtkWidget *channel widget new(int number);

12

• void channel widget destroy(GtkObject *object);

and the following channel widget specific functions:

• void channel change demand voltage(GtkVScale *vscale, gpointer user data);

• void channel enable(GtkButton *button, gpointer user data);

• void channel disable query(GtkButton *button, gpointer user data);

• void channel disable confirmed(GtkWidget *dialog, gint response, gpointer user data);

• void channel widget set name(GtkWidget *widget, gchar *name);

• void channel widget set parameters(GtkWidget *widget, gint channel enabled, gfloat demand voltage,
gfloat measured voltage, gfloat max voltage, gfloat ramp up rate, gfloat ramp down rate, gfloat mea-
sured current, gfloat max current, gfloat current time, gint channel status);

• void channel widget set colour(GtkWidget *widget);

• void channel set to max voltage(GtkWidget *widget); float channel calculate max safe voltage(float
measured voltage, float max voltage);

The widget also creates three new signals:

• changed - when the voltage is changed

• enabled - when the channel is turned on

• disabled - when the channel is turned off

3.2.1 channel widget get type

Returns the type of the widget.

3.2.2 channel widget class init

Class initialisation for channel widget class.

3.2.3 channel widget widget new

Create a new instance of a channel widget.

3.2.4 channel widget destroy

Destroy an instance of a channel widget.

3.2.5 channel change demand voltage

This function sets the demand voltage. It is called when the slider is moved. It emits the signal “changed”.

3.2.6 channel enable

This function turns on a channel. It is called when the ON button is clicked. It emits the signal “enabled”.

3.2.7 channel disable query

This function turns off a channel. It is called when the OFF button is clicked. If the voltage is below 50 Volts
or the channel has tripped, it calls channel disable confirmed to turn off the channel, but otherwise, it pops
up a dialog box, asking the user to confirm. Clicking on OK in that box, calls channel disable confirmed.

3.2.8 channel disable confirmed

This function is called from channel disable query either when the voltage is below 50 Volts, the channel has
tripped, or after the user has confirmed. It emits the signal “disabled”.

3.2.9 channel widget set name

This function sets the name of the channel.

13

3.2.10 channel widget set parameters

This function sets the parameters for the channel. It does all the updating for the GUI for that channel.
It also calls channel widget set colour to set the appropriate background colour according to the status (on,
off, trip).

The first time the function is called for a channel, it performs some initialisation tasks, creating the
pixmaps for arrows etc.

It calls channel widget calculate max safe voltage to calculate the maximum safe voltage, based on the
maximum voltage allowed for the channel and the present voltage. It sets the range of the the voltage slider,
so that it is not possible to exceed this value.

It sets the labels for the measured voltage and currents and calls channel widget set colour to set the
appropriate colour for the background based on status. It also activates or deactivates the on and off buttons
as appropriate.

It draws bars to indicate the measured voltage and current and a horizontal line for the demand voltage.

If we are ramping up or down, a arrow is shown to indicate this. Finally, if the channel is in warning or
trip status, a red cross is drawn over everything.

3.2.11 channel widget set colour

This function sets the background colour according to the channel status. Yellow means off, green means
on, pale orange means that the channel has tripped.

3.2.12 channel widget set to max voltage

This function sets the voltage for that channel to its maximum allowed value, based on the policy. It emits
the “changed” signal.

3.2.13 channel widget calculate max safe voltage

This function calculates the maximum voltage it is presently safe to ramp up to for a given channel.

14

4 The hv generate html program

This program consists of two files:

• hv generate html.c

• parse cmd.c

Note that parse cmd.c is the same command line parsing code used by the server (see section 2.7).

4.1 hv generate html.c

This file consists of the following functions:

• int main(int argc, char **argv);

• int do header();

• int do body();

• int do trailer();

• int parse data(int argc, char **argv);

• int parse time(int argc, char **argv);

• int treat channel status(int status);

• int treat board status(int status);

4.1.1 main

This is the main entry point. It just calls do header, do body and then do trailer.

4.1.2 do header

Generate the html header. This writes a standard header to standard output.

4.1.3 do body

Generate the html body. This reads the status file created by the server and uses parse cmd line to parse
it. If it finds a DATA line, it calls parse data and if it finds a TIME line it calls parse time.

4.1.4 do header

Generate the html trailer. This is just writes:

</table>

</body>

</html>

to standard output.

4.1.5 parse data

This function generates the html for a single channel, calling treat channel status and treat board status to
generate text versions of the numerical status value.

4.1.6 treat channel status

Convert the channel status value into a text string, which is written to standard output.

4.1.7 treat board status

Convert the board status value into a text string, which is written to standard output.

4.1.8 parse time

This writes the timestamp to standard output in html. Note that it also compares the timestamp with the
current time and adds a warning if it is more than 10 seconds old.

15

5 The hv kill script

This is a trivial script which sends the word “KILL” to the server’s command pipe. This causes the server to
ramp down all channels. Any arguments given on the command line are passed as a reason, which is logged,
but does not influence the way the command works.

16

6 The hv unkill script

This is a trivial script which sends the word “UNKILL” to the server’s command pipe. This causes the server
to enable any channel, for which the measured voltage is over 100 Volts, and to set the demand voltage to
that measured voltage. In other words, it cancels a kill, but doesn’t ramp back up.

17

7 The hv enable script

This is a trivial script which sends the word “ENABLE channel number” to the server’s command pipe.
This causes the server to turn that channel on.

18

8 The hv disable script

This is a trivial script which sends the word “DISABLE channel number” to the server’s command pipe.
This causes the server to turn that channel off.

19

9 The hv set voltage script

This is a trivial script which sends the word “VOLTAGE channel number voltage” to the server’s command
pipe. This causes the server to set the specific channel at the given voltage.

20

10 The hv ramp up script

This is a trivial script which sends the word “RAMP UP” to the server’s command pipe. It takes a single
argument, which is either the channel to ramp up, or “-a” for all enabled channels. This causes the server
to ramp up that channel (or all enabled channels if “-a” was specified) to the maximum safe voltage.

21

