
Miscellaneous programs for Miniball

Nigel Warr

11 July 2010

Contents

1 The program sort 22Ne 4
1.1 Usage . 4

1.1.1 Calibrating . 4

2 The script sort crosstalk 4

3 The program sort addback 5
3.1 Usage . 5

3.1.1 Calibrating . 6

4 The program multiplot 6
4.1 Usage . 6

5 The program analyse 22Ne 6

6 The program analyse 60Co 7

7 The program analyse 152Eu 8

8 The program analyse EuBa 9

9 The positioning code 10
9.1 Setting up a scan . 10
9.2 Saving the canvas . 11
9.3 Writing the results . 11
9.4 Tips . 11

10 The program medsort 11
10.1 The modules . 12

10.1.1 show mbs timestamp . 12
10.1.2 show dgf buffer headers 12
10.1.3 show dgf event headers 13
10.1.4 show dgf channel headers 13
10.1.5 show vme scalers . 14

1

10.1.6 show vme scalers average 15
10.1.7 show sum of vme scalers 16
10.1.8 show mbs triggers . 17
10.1.9 show patterns . 18
10.1.10 show subevents . 18
10.1.11 show number of events . 19
10.1.12 show particle rate . 19
10.1.13 show proton supercycle 20
10.1.14 show t1 ps . 20
10.1.15 show repetition rate . 21
10.1.16 show on off window . 21
10.1.17 show dgf scalers . 21
10.1.18 show dgf livetime . 22
10.1.19 show sum of dgf livetime 22
10.1.20 show particles over threshold 23
10.1.21 show madc data . 23
10.1.22 show laser on off fraction from scalers 24
10.1.23 show laser on off fraction from pattern unit 24
10.1.24 is laser on . 25
10.1.25 show laser power . 25
10.1.26 show number of bragg events 25
10.1.27 scope bragg . 26
10.1.28 scope cd . 26
10.1.29 scope cd crex . 26
10.1.30 show caen data . 26
10.1.31 check synch vs gflt . 27
10.1.32 livedata . 27
10.1.33 current . 27
10.1.34 generate dgf spectra . 28
10.1.35 generate madc spectra . 28
10.1.36 generate caen spectra . 28
10.1.37 generate particle ISOLDE spectra 28
10.1.38 generate particle gamma spectra 29
10.1.39 generate number of events spectra 29
10.1.40 generate gamma ISOLDE spectra 29
10.1.41 extract IC . 29
10.1.42 show correlated buffers 30
10.1.43 show correlated channels 30
10.1.44 med treat file . 31
10.1.45 med treat subevent . 31
10.1.46 med unpack bragg . 31
10.1.47 med unpack caen . 31
10.1.48 med unpack dgf scalers 31
10.1.49 med unpack dgf . 32
10.1.50 med unpack madc . 32
10.1.51 med unpack mbs timestamp 32

2

10.1.52 med unpack pattern . 32
10.1.53 med unpack vme scalers 32
10.1.54 ascii . 32
10.1.55 gf2 . 32
10.1.56 cracow . 33
10.1.57 raw . 33
10.1.58 spectrum . 33
10.1.59 command line . 33
10.1.60 IC to root . 34
10.1.61 show adc tdc mismatches 34
10.1.62 correlate buffers . 34
10.1.63 correlate channels . 34
10.1.64 calibrate . 34
10.1.65 check dgf scaler timestamper 3 34
10.1.66 generate 12C1 vs time . 35

3

1 The program sort 22Ne

In order to determine the positions of the Miniball detectors, we take data with
a 22Ne beam on a deuterated polyethylene target and look at the 440 keV peak
from the d(22Ne, 23Na)n reaction, using its doppler shifted energy for each seg-
ment to determine the angles.

As the segment efficiency is quite low, we rely only on the core energies but use
the segment as a gate. We assume that the segment with the most energy is
the one where the first interaction occurred.

So we want to sort a Miniball Event Data (MED) file generating spectra for the
core gated by the six segments, for each core. i.e. 144 spectra for the 24 cores.

The program sort 22Ne does this.

1.1 Usage

The simplest use is:

sort_22Ne XXX.med

Note that you can specify more than one MED file on the command line.

It uses the default calibration for approximately 4 MeV range (unless you specify
a calibration file) and sorts the data creating a root file called sort 22Ne.root,
which contains the 144 TH1I histograms. These have names like det0 gate1,
which means detector zero gated by segment 1 of that detector.

If you wish a different output file, you can specify it with the -o outputfile.root
option on the command line.

1.1.1 Calibrating

If you wish to specify a calibration file, you can use either the Marabou format
or the offl root med format and sort 22Ne will automatically detect which type
it is. To use a calibration file, use the -c calibration file option on the command
line.

2 The script sort crosstalk

In order to check if there is crosstalk on a Miniball capsule, we look at the core
signal gated by each of the six segments. Since we are looking at the same

4

signal, the energy spectrum should be identical in each case. However, if there
is crosstalk, the energy in the core may depend on which segment is hit. So
we need segment-gated core histograms, which is exactly what sort 22Ne gives
us. The only difference is that we run it on source data, rather than in-beam
data. Also we run it with the -a switch in order to prevent subtraction of the
off window.

So the sort crosstalk script just calls sort 22Ne with the -a switch in order
to turn off subtraction of the off window from the on window and with -o
sort crosstalk.root to change the default output file name.
To analyse it, it is just enough to superimpose all the histograms for one detec-
tor, which can be done in root or with hdtv.

3 The program sort addback

In order to determine the absolute efficiency with and without addback, it is
necessary to generate per-detector histograms of the core signals and also per-
cluster histograms of the sum of the three detectors in a cluster (addback).
Generating addback histograms involves correlating the timestamps to match
events in the same cluster, but in different DGFs.

The program sort addback does this. It takes one or more Miniball Event Data
(MED) file and generates these histograms. The per-detector histograms use
the same naming convention as the Marabou root files. i.e. the core spectra are
called hEXXcCal where XX indicates the cluster number (1. . . 8) and which
DGF (1, 3 or 5) for that cluster. It also has the sum of cores hCoreSum. In
addition to these, it has hEaddbackX for the addback spectrum for cluster X
(1. . . 8) and hCluSum for the sum of cores with addback. The use of this
naming convention makes it possible to use either files generated by this pro-
gram or those saved by Marabou for determining the efficiency without addback.

3.1 Usage

The simplest use is:

sort_addback XXX.med

Note that you can specify more than one MED file on the command line.

By default a file called sort addback.root is created. If you wish a different out-
put file, you can specify it with the -o outputfile.root option on the command
line.

5

3.1.1 Calibrating

If you wish to specify a calibration file, you can use either the Marabou format
or the offl root med format and sort addback will automatically detect which
type it is. To use a calibration file, use the -c calibration file option on the
command line.

4 The program multiplot

It is often useful to be able to quickly plot the same histogram from several
different root files with the same limits in order to compare them. The program
multiplot is a simple script to do this.

4.1 Usage

The first parameter on the command line is the name of the histogram and all
subsequent parameters are root files. It will create a TCanvas and divide it up
plotting that histogram from each of the root files.

The -x xlo:xhi switch sets the x-limits. e.g. -x100:1000 will plot the x range
from 100 to 1000.

The -y ylo:yhi switch sets the y-limits. e.g. -y100:1000 will plot the y range
from 100 to 1000.

The -l switch selects a logarithmic scale for y for 1D histograms or for z for 2D
histograms.

The -r rebin fact switch allows you to rebin the histogram before plotting.

If you plot a 2D histogram, you may want to pass options like “colz” to the
Draw function. This is done using the -o colz option.

Once you’ve created the TCanvas, you can easily save it as a .jpeg or .pdf etc.
You also have control over the objects on the canvas, so you can manipulate
them with the mouse. e.g. change limits, switch log on/off etc.

5 The program analyse 22Ne

In order to determine the positions of the Miniball detectors, we take data with
a 22Ne beam on a deuterated polyethylene target and look at the 440 keV peak

6

from the d(22Ne, 23Na)n reaction, using its doppler shifted energy for each seg-
ment to determine the angles.

The program sort 22Ne is used to sort the data into histograms, but then it
is necessary to determine the centroid of the doppler-shifted 440 keV peak for
each spectrum. This is done by the program analyse 22Ne.

It takes the sort 22Ne.root file generated by sort 22Ne (you can use the -i input-
file.root option to select a different root file). It then fits the doppler-shifted 440
keV peak in each spectrum and generates a TCanvas for each cluster in which
it displays the fit for all 18 segments in a 3 x 6 grid. It writes the values it
obtains to a file analyse 22Ne.dat (the -o outputfile switch allows you to change
this filename).

Each TCanvas is also saved in .pdf and .png format.

If you are working on a slow connection, you might find it useful to use the -b
switch which turns on batch mode. Then, the output files are all generated,
including the .pdf and .png copies of the TCanvas, but the TCanvas is not ac-
tually displayed.

6 The program analyse 60Co

The program analyse 60Co is used to determine the efficiency of Miniball using
data sorted by sort 60Co or the marabou root file. Note, however, that it is
only possible to determine the efficiency with addback in the former case.

The method relies on the sum peak of the 1173.2 and 1332.5 keV lines. The
area for this peak is proportional to the product of the efficiencies at 1173.2
and 1332.5 keV. So dividing by the area of the peak at 1173.2 keV we get the
efficiency at 1332.5 keV.

Strictly, we should fit each spectrum at 1173.2 and 2505.7 keV and calculate
the ratio and then sum them. However, this gives problems of statistics with
the sum peak. So instead, we assume that the average ratio for each detector
is equal to the ratio in the spectrum which is the sum of all detectors. This is
not strictly valid, but it is not a bad approximation if the individual detectors
have similar efficiencies. The total efficiency is then the number of detectors
multiplied by this average efficiency per detector.

The program fits the sum spectra (with and without addback if the addback
spectra are available) and creates a TCanvas for each of the three peaks (1173.2,
1332.5 and 2502.7 keV), where it shows the fits for each core in a 6 x 4 grid
and an additional TCanvas for the sum of all cores and sum of all clusters (i.e.

7

without and with addback respectively) for the three peaks in a 2 x 3 grid.

The program uses the file sort addback.root generated by the program sort addback
unless you use the -i inputfile.root option to specify a different file.

The results are written to analyse 60Co.da (the -o outputfile switch allows you
to change this filename).

Each TCanvas is also saved in .pdf and .png format.

If you are working on a slow connection, you might find it useful to use the -b
switch which turns on batch mode. Then, the output files are all generated,
including the .pdf and .png copies of the TCanvas, but the TCanvas is not ac-
tually displayed.

7 The program analyse 152Eu

In order to determine the relative efficiency of Miniball, we take data with a
152Eu source at the target position and sort it using sort addback. Note that it
is also possible to use the root files created by marabou, but then there is no
addback data.

We then analyse this data using analyse 152Eu. By default it uses the sort addback.root
file which is the default name for the output file of sort addback. The -i inputfile
switch can be used to specify a diffeent one. By default the results are writ-
ten to analyse 152Eu.dat, but this can be changed using the -o outputfile option.

The program opens a TCanvas divided up into a grid showing the fits of the
main peaks of the spectrum without addback and a second one with addback
and then a third with the efficiency as a function of energy.

If you know the absolute efficiency without addback at 1332 keV, you can spec-
ify this using the -n normalisation switch. In this case, analyse 152Eu displays
the absolute efficiencies rather than the relative ones.

If you are working on a slow connection, you might find it useful to use the -b
switch which turns on batch mode. Then, the output files are all generated,
including the .pdf and .png copies of the TCanvas, but the TCanvas is not ac-
tually displayed.

8

8 The program analyse EuBa

In order to determine the relative efficiency of Miniball, we take data with 133Ba
and 152Eu sources at the target position simultaneously (back to back) and sort
it using sort addback. Note that it is also possible to use the root files created
by marabou, but then there is no addback data.

We then analyse this data using analyse EuBa. By default it uses the sort addback.root
file which is the default name for the output file of sort addback. The -i inputfile
switch can be used to specify a diffeent one. By default the results are written
to analyse EuBa.dat, but this can be changed using the -o outputfile option.

The program opens a TCanvas divided up into a grid showing the fits of the
main peaks of the spectrum without addback and a second one with addback
and then a third with the efficiency as a function of energy.

If you know the absolute efficiency without addback at 1332 keV, you can spec-
ify this using the -n normalisation switch. In this case, analyse EuBa displays
the absolute efficiencies rather than the relative ones.

In order to match the 152Eu peaks to the 133Ba peaks, the code needs to know
the absolute activities of the two sources. As it does not have access to the live
time for the measurement, it cannot use this data for an absolute normalisation,
but assumes that as the data were acquired simultaneously, they have the same
live time and uses the ratio to calculate the relative factor between the two
sources.

By default, the absolute activities of the two ISOLDE sources 3680RP (133Ba)
and 3687RP (152Eu) are assumed.

The numbers were taken from the ISOLDE source list information:

3680RP Ba-133 16.20 kBq on 07.06.2010 MEYR 197/R-002

3687RP Eu-152 20.64 kBq on 07.06.2010 MEYR 197/R-002

It is possible to specify the activities using the -a activity 133Ba:activity 152Eu
switch and the time at which they were determined using the -t unix time of activity.
It is also possible to specify the measurement time (the default value is the
current time) with the -m unix time of measurement. The unix times are the
number of seconds since 1970. You can use the command date with the -d option
to specify the date and +%s to perform the conversion. e.g.

analyse_EuBa -a16.2:20.64 -t$(date -d "7 Jun 2010" +%s) -m$(date -d "7 Jul 2010" +%s)

which indicates the 133Ba source had 16.2 kBq and the 152Eu source 20.64 kBq
on 7 Jun 2010 and the measurement was performed a month later.

9

Note that as we only use the ratio between these two activities in the code, the
units don’t matter as long as the same units are used for both sources.

If you are working on a slow connection, you might find it useful to use the -b
switch which turns on batch mode. Then, the output files are all generated,
including the .pdf and .png copies of the TCanvas, but the TCanvas is not ac-
tually displayed.

9 The positioning code

In order to determine the positions of the Miniball detectors, we take data with
a 22Ne beam on a deuterated polyethylene target and look at the 440 keV peak
from the d(22Ne, 23Na)n reaction, using its doppler shifted energy for each seg-
ment to determine the angles.

We use the program sort 22Ne to sort the data and then analyse 20Ne to deter-
mine the energies of the doppler-shifted 440 keV peaks for each segment. The
next step is to compare these energies to the calculated ones for a given set of
r, θ, φ, α and β, which we then adjust.

The problem is that we have four values for each cluster (r, θ, φ and α) and
one value common to all eight clusters (β) so we are trying to find a minimum
in an 33-dimensional space, which has lots of local minima.

There is no way to automate this procedure sensibly, so it has to be done by
hand. So instead, a root class called PositionClusters has been created. You
need to create an instance of this class:

PositionClusters p;

and then you can use it.

9.1 Setting up a scan

The command Setup is used from the PositionClusters class to set up the scan.
e.g.:

p.Setup(12, 156.3, 52.3, 313.9, 300.5, 0.0667); // Forward left up

This indicates that we are working with cluster 12 (this determines the set of
energies it reads from the analyse 22Ne.dat file, that the starting value of r is

10

156.3 mm, of θ is 52.3◦, of φ is 313.9◦, α is 300.5◦ and β is 0.0667.

The code will then create a TCanvas for this cluster divided up into a 2 x 3 grid.
It then scans each parameter in turn around the specified values, always leaving
the other values at the values set by the user. It plots the χ2 as a function of
that parameter. In the sixth TPad of the grid it displays the results.

9.2 Saving the canvas

The command SaveCanvas is used from the PositionClusters class save the can-
vas as both .pdf and .png.

p.SaveCanvas();

The name for the files is generated based on the cluster number, so cluster 16
will generate names analyse 22Ne 16.pdf and analyse 22Ne 16.png.

9.3 Writing the results

The command WriteResults is used from the PositionClusters class to write the
results for all the clusters to a config.dat file in the format used by offl root med.

p.WriteResults();

9.4 Tips

Note that φ is the one parameter you can actually read off the frame accurately.
The value of θ can be obtained within a few degrees by getting the accurate
position of the arm and adding or subtracting about 18.5◦ offset between the
arm and the centre of the cluster. The value of α has to be estimated by eye.
If α = 0◦ it means A3 is pointing upwards, α = 120◦ means C3 is pointing
upwards and α = 240◦ means B3 is pointing upwards.

10 The program medsort

The program medsort is a set of modules for sorting Miniball Event Data (MED)
files for debugging purposes. It is not for analysis. The actualy medsort com-
mand is, in fact, a link to modcode which is a general purpose module loading
code, that does nothing, but can load modules to do things. So what it does
depends on the modules you load.

11

The behaviour is different when modcode is called as modcode or as medsort be-
cause it uses the name to build the name of environment variable which should
point to the location of the modules. So to use medsort you need to have an
environment variable modcode medsort defined to point to the directory con-
taining the .so files belonging to medsort.

In order to run medsort you need to provide the name of a module with the -m
option. You can either specify a .so file with its full path, or just the base name,
in which case it looks in the directory pointed to by modcode medsort.

Some modules require variables to be set and this can be done using the -v
option. e.g. if you want to set the variable MAXBUF to 1000 you would do -v
MAXBUF=1000.

Then you need to give a list of one or more MED files on the command line.
Sometimes you want to pass switches to modules. This leads to the issue of
whether a switch is intended for medsort or for the underlying module. To
make this clear, use the – notation. Everything before the double-minus-sign is
a switch for medsort and everything after for the modules.

You can get a list of modules with:

medsort -h

10.1 The modules

10.1.1 show mbs timestamp

This module shows the MBS timestamp which is based on the system time of
the power PC during acquisition. However, it includes microseconds as well as
the normal unix time.

Usage:

medsort -m show_mbs_timestamps *.med

which gives an output like:

Timestamp 0 : Fri 09Jul2010 09:25:49.062443848

Timestamp 4809 : Fri 09Jul2010 09:26:49.001068121

Timestamp 9331 : Fri 09Jul2010 09:27:49.009767333

Timestamp 13855 : Fri 09Jul2010 09:28:49.021701181

10.1.2 show dgf buffer headers

This module shows the DGF buffer header information. i.e. for each DGF buffer
in the MED file, the number of words, format, module number and timestamp

12

of the start of the acquisition of that buffer.

Usage:

medsort -m show_dgf_buffer_headers *.med

which gives an output like:

B 0: Nwords= 66 Module= 3 Format=0x0101 Timestamp = 0x00000000FEC1

B 1: Nwords= 84 Module= 4 Format=0x0101 Timestamp = 0x00000000FEBF

B 2: Nwords= 66 Module= 9 Format=0x0101 Timestamp = 0x00000000FEC0

B 3: Nwords= 84 Module= 10 Format=0x0101 Timestamp = 0x00000000FEC0

B 4: Nwords= 36 Module= 13 Format=0x0101 Timestamp = 0x00000000FEBF

10.1.3 show dgf event headers

This module shows the DGF event header information. i.e. for each DGF event
in the MED file, the hit pattern and the even timestamp. Since this information
is hard to interpret without the buffer header, this module implicitly loads the
show dgf buffer headers module and shows both the buffer and event headers.

Usage:

medsort -m show_dgf_event_headers *.med

which gives an output like:

B0: Nwords=66 Module=3 Format=0x0101 Timestamp = 0x00000000FEC1

E0: Pattern=0x0007 Timestamp=0x0000000694E5 (9152.900 us)

E1: Pattern=0x0007 Timestamp=0x000000069D34 (9206.075 us)

B1: Nwords=84 Module=4 Format=0x0101 Timestamp = 0x00000000FEBF

E0: Pattern=0x000F Timestamp=0x0000000694E4 (9152.925 us)

E1: Pattern=0x000F Timestamp=0x000000069D34 (9206.125 us)

B2: Nwords=66 Module=9 Format=0x0101 Timestamp = 0x00000000FEC0

E0: Pattern=0x0007 Timestamp=0x00000006B593 (9362.075 us)

E1: Pattern=0x0007 Timestamp=0x00000006C6A3 (9471.275 us)

10.1.4 show dgf channel headers

This module shows the DGF channel header information. i.e. for each DGF
channel in each DGF event event in the MED file, the energy and trigger time.
Since this information is hard to interpret without the event and buffer header,
this module implicitly loads the show dgf event headers module which in turn
loads show dgf buffer headersand shows the buffer, event and channel headers.
Usage:

13

medsort -m show_dgf_channel_headers *.med

which gives an output like:

B0: Nwords=66 Module=3 Format=0x0101 Timestamp = 0x00000000FEC1

E0: Pattern=0x0007 Timestamp=0x0000000694E5 (9152.900 us)

3.0 E=1363 T=0x0000000694FA

3.1 E=1348 T=0x0000000694FA

3.2 E=0 T=0x0000000694FA

E1: Pattern=0x0007 Timestamp=0x000000069D34 (9206.075 us)

3.0 E=2365 T=0x000000069D4B

3.1 E=2346 T=0x000000069D4B

3.2 E=0 T=0x000000069D4B

B1: Nwords=84 Module=4 Format=0x0101 Timestamp = 0x00000000FEBF

E0: Pattern=0x000F Timestamp=0x0000000694E4 (9152.925 us)

4.0 E=0 T=0x0000000694FA

4.1 E=0 T=0x0000000694FA

4.2 E=0 T=0x0000000694FA

4.3 E=0 T=0x0000000694FA

E1: Pattern=0x000F Timestamp=0x000000069D34 (9206.125 us)

4.0 E=0 T=0x000000069D4B

4.1 E=0 T=0x000000069D4B

4.2 E=0 T=0x000000069D4B

4.3 E=0 T=0x000000069D4B

10.1.5 show vme scalers

This module shows the VME scalers each time the occur in the data stream.

Usage:

medsort -m show_vme_scalers *.med

which gives an output like:

0 PPAC X1 0 1 PPAC X2 0

2 PPAC X3 0 3 PPAC X4 0

4 PPAC X5 0 5 PPAC X6 0

6 PPAC X7 0 7 PPAC X8 0

8 PPAC X9 0 9 PPAC X10 0

10 PPAC X11 0 11 PPAC X12 0

12 PPAC X13 0 13 PPAC X14 0

14 PPAC X15 0 15 PPAC X16 0

16 PPAC X17 0 17 PPAC X18 0

18 PPAC X19 0 19 PPAC X20 0

14

20 PPAC X21 0 21 PPAC X22 0

22 PPAC X23 0 23 PPAC X24 0

24 PPAC X25 0 25 PPAC X26 0

26 PPAC X27 0 27 PPAC X28 0

28 PPAC X29 0 29 PPAC X30 0

30 PPAC X31 0 31 PPAC X32 0

32 PPAC Y1 0 33 PPAC Y2 0

34 PPAC Y3 0 35 PPAC Y4 0

36 PPAC Y5 0 37 PPAC Y6 0

38 PPAC Y7 0 39 PPAC Y8 0

40 PPAC Y9 0 41 PPAC Y10 0

42 PPAC Y11 0 43 PPAC Y12 0

44 PPAC Y13 0 45 PPAC Y14 0

46 PPAC Y15 0 47 PPAC Y16 0

48 PPAC Y17 0 49 PPAC Y18 0

50 PPAC Y19 0 51 PPAC Y20 0

52 PPAC Y21 0 53 PPAC Y22 0

54 PPAC Y23 0 55 PPAC Y24 0

56 PPAC Y25 0 57 PPAC Y26 0

58 PPAC Y27 0 59 PPAC Y28 0

60 PPAC Y29 0 61 PPAC Y30 0

62 PPAC Y31 0 63 PPAC Y32 0

64 Q1 free 0 65 Q2 free 2

66 Q3 free 0 67 Q4 free 1

68 Q1 delayed 0 69 Q2 delayed 2

70 Q3 delayed 0 71 Q4 delayed 1

72 Q1 accepted 0 73 Q2 accepted 2

74 Q3 accepted 0 75 Q4 accepted 1

76 Q1 and gamma 0 77 Q2 and gamma 0

78 Q3 and gamma 0 79 Q4 and gamma 1

80 Q1 gate 0 81 Q2 gate 0

82 Q3 gate 0 83 Q4 gate 0

84 EBIS pulse 38 85 Total DGF 7321

86 Si OR 0 87 SYNCH 76

88 GFLT 76 89 1 MHz 1000000

90 1 MHz and on win 30377 91 1 MHz and GFLT 60764

92 T1 1 93 PS 0

94 1MHz and laser on 0 95 Bragg 0

This repeats once for each second of data.

10.1.6 show vme scalers average

This module shows the VME scalers for the free particle trigger rate averaged
per second over every five minutes of acquisition time.

15

Usage:

medsort -m show_vme_scalers_average *.med

which gives an output like:

Thu 19Aug2010 16:26:22 127.27 131.24 157.81 145.74

Thu 19Aug2010 16:31:22 131.07 133.17 161.95 148.60

Thu 19Aug2010 16:36:22 135.86 139.00 164.41 152.08

10.1.7 show sum of vme scalers

This module shows the sum of each VME scaler for the whole file. As it goes
through the data it gives a message periodically to show how many triggers it
has treated and at the end it shows the scalers.

Usage:

medsort -m show_sum_of_vme_scalers *.med

which gives an output like:

PPAC X1 0 PPAC X2 0

PPAC X3 0 PPAC X4 0

PPAC X5 0 PPAC X6 0

PPAC X7 0 PPAC X8 0

PPAC X9 0 PPAC X10 0

PPAC X11 0 PPAC X12 0

PPAC X13 0 PPAC X14 0

PPAC X15 0 PPAC X16 0

PPAC X17 0 PPAC X18 0

PPAC X19 0 PPAC X20 0

PPAC X21 0 PPAC X22 0

PPAC X23 0 PPAC X24 0

PPAC X25 0 PPAC X26 0

PPAC X27 0 PPAC X28 0

PPAC X29 0 PPAC X30 0

PPAC X31 0 PPAC X32 0

PPAC Y1 0 PPAC Y2 0

PPAC Y3 0 PPAC Y4 0

PPAC Y5 0 PPAC Y6 0

PPAC Y7 0 PPAC Y8 0

PPAC Y9 0 PPAC Y10 0

PPAC Y11 0 PPAC Y12 0

16

PPAC Y13 0 PPAC Y14 0

PPAC Y15 0 PPAC Y16 0

PPAC Y17 0 PPAC Y18 0

PPAC Y19 0 PPAC Y20 0

PPAC Y21 0 PPAC Y22 0

PPAC Y23 0 PPAC Y24 0

PPAC Y25 0 PPAC Y26 0

PPAC Y27 0 PPAC Y28 0

PPAC Y29 0 PPAC Y30 0

PPAC Y31 0 PPAC Y32 0

Q1 free 17102 Q2 free 7215

Q3 free 36537 Q4 free 12342

Q1 delayed 12117 Q2 delayed 4371

Q3 delayed 29975 Q4 delayed 7403

Q1 accepted 12117 Q2 accepted 4371

Q3 accepted 29975 Q4 accepted 7403

Q1 and gamma 601 Q2 and gamma 409

Q3 and gamma 1040 Q4 and gamma 590

Q1 gate 10784 Q2 gate 3247

Q3 gate 27174 Q4 gate 6228

EBIS pulse 99131 Total DGF 19360056

Si OR 47650 SYNCH 198249

GFLT 198249 1 MHz 2630000000

1 MHz and on win 79249023 1 MHz and GFLT 158508472

T1 820 PS 58

1MHz and laser on 1322395078 Bragg 0

10.1.8 show mbs triggers

This module shows MBS triggers. You get a trigger 14 at the start of the data
and a trigger 15 at the end and a trigger 1 for each event. It is probably not
that useful to use this module on its own, but if loaded together with another
module, the trigger messages can be used to separate the events in the output.

Usage:

medsort -m show_mbs_triggers *.med

which gives an output like:

Trigger 14 (START)

Trigger 1 (EVENT)

Trigger 1 (EVENT)

Trigger 1 (EVENT)

Trigger 1 (EVENT)

17

10.1.9 show patterns

This module shows the patterns from the pattern unit each time they occur in
the MED file.

Usage:

medsort -m show_patterns *.med

which gives an output like:

000000C0 "Q4" "Q4 and gamma"

00000040 "Q4"

00000103 "Q1" "Q1 and gamma" "Laser"

00000001 "Q1"

000000C0 "Q4" "Q4 and gamma"

Note that “Laser” actually means “laser off” now, because the logic is inverted.
i.e. the bit is zero for laser on and one for laser off.

10.1.10 show subevents

This module shows the MBS subevent types.

Usage:

medsort -m show_subevents *.med

which gives an output like:

Start trigger 14

MBS timestamp Fri 09Jul2010 09:25:49.062443848

Dummy subevent [111,111]

Dummy subevent [111,111]

Dummy subevent [111,111]

End trigger 14

Start trigger 1

MBS timestamp Fri 09Jul2010 09:25:49.254938333

DGF buffer 32

DGF buffer 37

DGF buffer 38

18

DGF buffer 41

DGF buffer 42

DGF buffer 45

DGF buffer 46

DGF buffer 53

End trigger 1

10.1.11 show number of events

This module shows the number of MBS events in the MED file.

Usage:

medsort -m show_number_of_events *.med

which gives an output like:

Opening AoQ4_009.med

Closed AoQ4_009.med with 198634 events

10.1.12 show particle rate

This module shows the particle rates in counts per second during the MED file.

Usage:

medsort -m show_particle_rates *.med

which gives an output like:

Period = 120 seconds

125.199054569 120.150 129.300 147.325 140.508 Mon 12Sep2016 23:24:20.841878909

245.199032144 119.608 127.200 149.283 142.208 Mon 12Sep2016 23:26:20.841856484

365.198684993 118.842 127.517 152.583 138.058 Mon 12Sep2016 23:28:20.841509333

485.198306447 120.908 129.142 152.883 141.433 Mon 12Sep2016 23:30:20.841130787

605.197933599 119.592 129.383 152.850 139.575 Mon 12Sep2016 23:32:20.840757939

It accepts the variable period, which selects the period over which the rates
should be averaged. A negative value for period corresponds to that number of
supercycles. e.g.

medsort -m show_particle_rates -v period=-5 *.med

averages over 5 supercycles.

19

10.1.13 show proton supercycle

This module shows the proton pulses in the supercycle.

Usage:

medsort -m show_proton_supercycle *.med

which gives an output like:

Timestamper module is number 53

- Thu 13Oct2016 15:52:36 1 * 1+x 3+x 6+x 8+x 9+x 11+x 12+x 15+x (8/15+x)

Thu 13Oct2016 15:52:36 - Thu 13Oct2016 16:07:09 26 * 5 8 11 14 16 19 21 22 24 25 28 (11/28)

Thu 13Oct2016 16:07:09 - Thu 13Oct2016 16:16:41 18 * 5 6 8 11 14 16 17 19 21 22 24 25 28 (13/28)

Thu 13Oct2016 16:16:41 - 1 * 5 6 (2/28)

In this case, the first supercycle in the MED file is missing the first pulses. Here
x is 13, so we have pulses 14, 16, 19, 21, 22, 24, 25 and 28. Then we have 26
supercycles with 11 pulses per supercycle and then at 4:07 PM, the supercycle
was changed and we had 18 more supercycles with 13 pulses per supercycle.
Finally, the last supercycle was truncated by the end of the MED file.

10.1.14 show t1 ps

This module shows the proton pulses in the supercycle, much like show proton supercycle
but it also shows the DGF timestamps.

Usage:

medsort -m show_t1_ps *.med

So the output looks like:

Thu 13Oct2016 16:08:50.746320181 PS T=0x00098F2AAEA6 33.600

Thu 13Oct2016 16:08:56.426178606 T1 T=0x00099C995F52 5.634 5

Thu 13Oct2016 16:08:57.628284242 T1 T=0x00099F75C9A2 6.834 6

Thu 13Oct2016 16:09:00.026102909 T1 T=0x0009A52E9E3F 9.234 8

Thu 13Oct2016 16:09:03.626012484 T1 T=0x0009ADC3DD2B 12.834 11

Thu 13Oct2016 16:09:07.225897515 T1 T=0x0009B6591C17 16.434 14

Thu 13Oct2016 16:09:09.625859272 T1 T=0x0009BC11F0B3 18.834 16

Thu 13Oct2016 16:09:10.825838363 T1 T=0x0009BEEE5B01 20.034 17

Thu 13Oct2016 16:09:13.225754787 T1 T=0x0009C4A72FA0 22.434 19

Thu 13Oct2016 16:09:15.625706303 T1 T=0x0009CA60043C 24.834 21

Thu 13Oct2016 16:09:16.825684545 T1 T=0x0009CD3C6E8C 26.034 22

Thu 13Oct2016 16:09:19.225628848 T1 T=0x0009D2F54328 28.434 24

Thu 13Oct2016 16:09:20.425581212 T1 T=0x0009D5D1AD78 29.634 25

Thu 13Oct2016 16:09:24.025480303 T1 T=0x0009DE66EC64 33.234 28

20

10.1.15 show repetition rate

This module shows the EBIS frequency.

Usage:

medsort -m show_repetition_rate *.med

Timestamper module is number 53

Averaging over a period of 300 seconds

Sun 16Oct2016 17:44:05 79.99938 ms = 12.50010 Hz

Sun 16Oct2016 17:49:05 79.99925 ms = 12.50012 Hz

Sun 16Oct2016 17:54:05 79.99923 ms = 12.50012 Hz

Sun 16Oct2016 17:59:05 79.99922 ms = 12.50012 Hz

The period can be changed using the variable period.

10.1.16 show on off window

This module shows the average length of the on and off windows and the EBIS
frequency.

Usage:

medsort -m show_on_off_window *.med

which gives an output like:

On win: 799.437 us Off win: 799.542 us EBIS freq: 37.692 Hz

10.1.17 show dgf scalers

This module shows the DGF scalers each time they occur in the MED file.

Usage:

medsort -m show_dgf_scalers *.med

which gives an output like:

Module: 1

REALTIMEA 0 REALTIMEB 802 REALTIMEC 0 RUNTIMEA 0

RUNTIMEB 709 RUNTIMEC 57401 GSLTTIMEA 0 GSLTTIMEB 0

GSLTTIMEC 0 NUMEVENTSA 0 NUMEVENTSB 21 DSPERROR 0

SYNCHDONE 1 TEMPERATURE 0 BUFHEADLEN 6 EVENTHEADLEN 3

CHANHEADLEN 9 U14 0 USEROUT 24583 AOUTBUFFER 20476

LOUTBUFFER 8192 AECORR 17618 LECORR 44 ATCORR 0

21

LTCORR 0 HARDWAREID 1284 HARDVARIANT 1 FIFOLENGTH 4096

FIPPIID 11 FIPPIVARIANT 0 INTRFCID 0 INTRFCVARIANT 0

SOFTWAREID 519 SOFTVARIANT 4 LIVETIMEA0 0 LIVETIMEB0 44

LIVETIMEC0 26098 FASTPEAKSA0 0 FASTPEAKSB0 320 GSLTFPA0 0

GSLTFPB0 0 PUPEAKSA0 0 PUPEAKSB0 305 OVERFLOWA0 0

OVERFLOWB0 0 INSPECA0 0 INSPECB0 0 UNDERFLOWA0 0

UNDERFLOWB0 0 ADCPERDACA0 0 ADCPERDACB0 0 UNUSEDC0 0

LIVETIMEA1 0 LIVETIMEB1 44 LIVETIMEC1 26088 FASTPEAKSA1 0

FASTPEAKSB1 72 GSLTFPA1 0 GSLTFPB1 0 PUPEAKSA1 0

PUPEAKSB1 70 OVERFLOWA1 0 OVERFLOWB1 0 INSPECA1 0

INSPECB1 0 UNDERFLOWA1 0 UNDERFLOWB1 0 ADCPERDACA1 0

ADCPERDACB1 0 UNUSEDC1 0 LIVETIMEA2 0 LIVETIMEB2 44

LIVETIMEC2 26047 FASTPEAKSA2 0 FASTPEAKSB2 94 GSLTFPA2 0

GSLTFPB2 0 PUPEAKSA2 0 PUPEAKSB2 91 OVERFLOWA2 0

OVERFLOWB2 0 INSPECA2 0 INSPECB2 0 UNDERFLOWA2 0

UNDERFLOWB2 0 ADCPERDACA2 0 ADCPERDACB2 0 UNUSEDC2 0

LIVETIMEA3 0 LIVETIMEB3 44 LIVETIMEC3 26172 FASTPEAKSA3 0

FASTPEAKSB3 0 GSLTFPA3 0

10.1.18 show dgf livetime

This module shows the total live time for the DGFs for an MED file.

Usage:

medsort -m show_dgf_livetime *.med

which gives an output like:

Module: 1 99.96% 99.96% 99.96% 99.96%

Module: 2 99.96% 99.96% 99.96% 99.96%

Module: 3 99.96% 99.96% 99.96% 99.96%

for each scaler readout in the file.

10.1.19 show sum of dgf livetime

This module shows the total live time for the DGFs for an MED file.

Usage:

medsort -m show_sum_of_dgf_livetime *.med

which gives an output like:

Module: 1 Live: 33110.28297 s Run: 33125.01221 s 99.956 %

Module: 2 Live: 33113.59936 s Run: 33125.84647 s 99.963 %

22

Module: 3 Live: 33110.37250 s Run: 33124.96406 s 99.956 %

etc. etc.

Module: 53 Live: 33117.97390 s Run: 33122.88574 s 99.985 %

Module: 54 Live: 33096.33179 s Run: 33126.02318 s 99.910 %

Average Live: 33109.62753 s Run: 33125.19628 s 99.953 %

10.1.20 show particles over threshold

This module shows the particle count rates by counting events in the ADCs
above a threshold and comparing with the MBS timestamp.

Usage:

medsort -m show_particles_over_threshold *.med

which gives an output like:

Fri 09Jul2010 09:30:49 0.007 0.017 0.000 0.033

Fri 09Jul2010 09:35:49 0.030 0.090 0.710 0.133

Fri 09Jul2010 09:40:49 0.163 0.350 4.607 1.007

Fri 09Jul2010 09:45:49 0.787 0.820 8.053 2.870

Fri 09Jul2010 09:50:49 1.153 0.197 1.547 2.617

Fri 09Jul2010 09:55:49 1.497 0.300 1.747 3.267

Fri 09Jul2010 10:00:49 1.900 0.330 2.013 4.347

Fri 09Jul2010 10:05:49 2.597 0.347 2.450 4.997

10.1.21 show madc data

This module shows the data from the MADC32 modules.

Usage:

medsort -m show_madc_data *.med

which gives an output like:

Module: 58 Timestamp: 0x00000046 30 30 28 29 34 32 33 36 28 32 31 34 35 33 36 31

Module: 58 Timestamp: 0x00000046 38 37 36 35 35 31 35 37 30 34 32 34 36 33 38 32

Module: 55 Timestamp: 0x00000046 60 31 36 27 32 32 35 35 34 33 37 39 30 31 33 31

Module: 55 Timestamp: 0x00000046 60 30 34 27 32 32 32 35 32 32 37 39 29 31 32 31

23

10.1.22 show laser on off fraction from scalers

This module shows the fraction of time that the laser was on in an MED file
using the 1 MHz and laser on scaler vs. the 1 MHz scaler. Note that the signal
only indicates the state of the request not what the laser actually does.

Usage:

medsort -m show_laser_on_off_fraction_from_scalers *.med

which gives an output like:

0.000 49.822 %

0.000 49.794 %

0.000 49.765 %

0.000 49.737 %

0.000 49.708 %

0.000 49.680 %

68.394 49.690 %

100.000 49.719 %

100.000 49.748 %

100.000 49.777 %

100.000 49.805 %

100.000 49.834 %

100.000 49.863 %

100.000 49.891 %

The left number is the current value and the right one is the average for the
whole file. This run was in laser on/off mode.

10.1.23 show laser on off fraction from pattern unit

This module shows the fraction of time that the laser was on in an MED file
using the pattern unit bit. Note that the signal only indicates the state of the
request not what the laser actually does.

Usage:

medsort -m show_laser_on_off_fraction_from_pattern_unit *.med

which gives an output like:

Trigger 3000 ; laser on = 1 ; laser_off = 2 ; ratio = 33.333 %

Trigger 6000 ; laser on = 1 ; laser_off = 3 ; ratio = 25.000 %

Trigger 9000 ; laser on = 1 ; laser_off = 4 ; ratio = 20.000 %

Trigger 12000 ; laser on = 3 ; laser_off = 4 ; ratio = 42.857 %

24

Trigger 15000 ; laser on = 3 ; laser_off = 8 ; ratio = 27.273 %

Trigger 18000 ; laser on = 4 ; laser_off = 8 ; ratio = 33.333 %

Trigger 21000 ; laser on = 4 ; laser_off = 8 ; ratio = 33.333 %

Trigger 24000 ; laser on = 5 ; laser_off = 8 ; ratio = 38.462 %

Trigger 27000 ; laser on = 5 ; laser_off = 8 ; ratio = 38.462 %

Trigger 30000 ; laser on = 6 ; laser_off = 8 ; ratio = 42.857 %

Trigger 33000 ; laser on = 7 ; laser_off = 8 ; ratio = 46.667 %

The left number is the current value and the right one is the average for the
whole file. This run was in laser on/off mode.

10.1.24 is laser on

This module checks if the laser was in ON, ON/OFF or OFF mode.
Usage:

medsort -m is_laser_on *.med

which gives an output like:

IS557_065_78Zn_208Pb_pos2.med laser ON

IS557_066_78Zn_208Pb_pos2.med laser ON

IS557_067_78Zn_196Pt_pos1.med laser ON

IS557_068_78Zn_196Pt_pos1.med laser OFF

IS557_069_78Zn_208Pb_pos2.med laser ON

10.1.25 show laser power

This module is obsolete. In the past, the laser people provided us with an
analogue signal “laser power” which we fed to one of the ADCs. This is no
longer the case. Use the laser vistar instead.
Usage:

medsort -m show_laser_power *.med

10.1.26 show number of bragg events

This module shows the number of events from the Bragg chamber in an MED
file.

Usage:

medsort -m show_number_of_bragg_events *.med

which gives an output like:

1024 Bragg events

25

10.1.27 scope bragg

This module reads the Bragg data and sends the traces to the scope program.
It gives no useful output to the screen.

Usage:

scope 0 &

scope 1 &

medsort -m scope_bragg *.med

10.1.28 scope cd

This module is for displaying the 2D hitpattern of the CD in the Coulex con-
figuration. It decodes the MUX data to plot ring vs. sector. It sends the data
to the scope2d program. It gives no useful output to the screen.

Usage:

scope2d &

medsort -m scope_cd *.med

It can also use the livedata module to try to give a live display.

10.1.29 scope cd crex

This module is for displaying the 2D hitpattern of the CD in the C-REX con-
figuration. It decodes the MUX data to plot ring vs. sector. It sends the data
to the scope2d program. It gives no useful output to the screen.

Usage:

scope2d &

medsort -m scope_crex_cd *.med

It can also be used together with the livedata module to try to give a live display.

10.1.30 show caen data

This module shows the data from the CAEN modules.

Usage:

medsort -m show_caen_data *.med

which gives an output like:

crate = 00 module = 62: 3234

crate = 00 module = 62: 269

The horizontal position indicates which channel the event came from.

26

10.1.31 check synch vs gflt

This module shows the number of SYNCs per second and the number of GFLTs
per second. These values should be equal. If they are not, something is wrong
with the electronics.

Usage:

medsort -m check_synch_vs_gflt *.med

which gives an output like:

Fri 09Jul2010 09:30:50 SYNCH=75.372093 GFLT=75.372093 ERROR=0.000000

Fri 09Jul2010 09:35:51 SYNCH=75.385382 GFLT=75.385382 ERROR=0.000000

Fri 09Jul2010 09:40:52 SYNCH=75.375415 GFLT=75.375415 ERROR=0.000000

Fri 09Jul2010 09:45:53 SYNCH=75.382060 GFLT=75.385382 ERROR=-0.003322

Fri 09Jul2010 09:50:54 SYNCH=75.382060 GFLT=75.378738 ERROR=0.003322

Fri 09Jul2010 09:55:55 SYNCH=75.382060 GFLT=75.382060 ERROR=0.000000

Fri 09Jul2010 10:00:56 SYNCH=75.382060 GFLT=75.382060 ERROR=0.000000

Fri 09Jul2010 10:05:57 SYNCH=75.375415 GFLT=75.375415 ERROR=0.000000

10.1.32 livedata

This module tries to throttle the reading of the MED file if it reaches a times-
tamp which is only a few seconds old. It can be used on the file which is
currently being acquired and it tries to stay just a little behind the acquisition,
so the data are more or less live. Unfortunately, there is no simple way to tell
the difference between the end of a file because the DAQ has closed it and the
end of the file, because the DAQ is waiting for the next event to write to it. So
sometimes it will quit early.

The module makes no sense on its own and must be combined with other mod-
ules which provide useful output regularly, while parsing the file. e.g. with
show particle rate:

medsort -m show_particle_rate -m livedata *.med

10.1.33 current

This module is used instead of providing the name of a .med file on the com-
mand line. It looks for the most recent .med file in the current working directory
and passes it to the treat med module. When that file is done, it looks to see if
a new file has been created and if so treats it. If not, it waits until one is created.

On its own, it does nothing, but it can be combined with other modules to keep
treating the current file.
e.g. we can run show particle rate on the current .med file and try to keep just
behind the acquisition using livedata:

27

medsort -m show_particle_rate -m livedata -m current *.med

Note, that the logic for this is not quite perfect, since there is no way to know
if there is no data in a file, because it was stopped short, or because it has yet
to be written. So sometimes it repeats a whole file.

10.1.34 generate dgf spectra

This module generates spectra of the DGF data which are written into the di-
rectory pointed to by the environment variable SW HIST DIR. The spectra are
written in the Radware gf2 format. It doesn’t generate any useful output to the
screen.

Usage:

export SW_HIST_DIR=/tmp

medsort -m generate_dgf_spectra *.med

10.1.35 generate madc spectra

This module generates spectra of the MADC32 data which are written into the
directory pointed to by the environment variable SW HIST DIR. The spectra
are written in the Radware gf2 format. It doesn’t generate any useful output
to the screen.

Usage:

export SW_HIST_DIR=/tmp

medsort -m generate_madc_spectra *.med

10.1.36 generate caen spectra

This module generates spectra of the CAEN data which are written into the
directory pointed to by the environment variable SW HIST DIR. The spectra
are written in the Radware gf2 format. It doesn’t generate any useful output
to the screen.

Usage:

export SW_HIST_DIR=/tmp

medsort -m generate_caen_spectra *.med

10.1.37 generate particle ISOLDE spectra

This module generates spectra of the times of particles vs. EBIS, T1 and PS
signals from ISOLDE, which are written into the directory pointed to by the
environment variable SW HIST DIR. The spectra are written in the Radware

28

gf2 format. It doesn’t generate any useful output to the screen.

Usage:

export SW_HIST_DIR=/tmp

medsort -m generate_particle_ISOLDE_spectra *.med

10.1.38 generate particle gamma spectra

This module generates spectra of the times of particles vs. gamma, which are
written into the directory pointed to by the environment variable SW HIST DIR.
The spectra are written in the Radware gf2 format. It doesn’t generate any use-
ful output to the screen.

Usage:

export SW_HIST_DIR=/tmp

medsort -m generate_particle_gamma_spectra *.med

10.1.39 generate number of events spectra

This module generates spectra showing the distribution of the number of events
per DGF buffer, which are written into the directory pointed to by the envi-
ronment variable SW HIST DIR. The spectra are written in the Radware gf2
format. It doesn’t generate any useful output to the screen.

Usage:

medsort -m generate_number_of_events_spectra *.med

10.1.40 generate gamma ISOLDE spectra

This module generates spectra of the times of gammas vs. EBIS, T1 and PS
signals from ISOLDE, which are written into the directory pointed to by the
environment variable SW HIST DIR. The spectra are written in the Radware
gf2 format. It doesn’t generate any useful output to the screen.

Usage:

export SW_HIST_DIR=/tmp

medsort -m generate_gamma_ISOLDE_spectra *.med

10.1.41 extract IC

This module generates of the energy loss in the gas and the energy in Si for
the ionisation chamber, which are written into the directory pointed to by the
environment variable SW HIST DIR. The spectra are written in the Radware

29

gf2 format. It doesn’t generate any useful output to the screen.

It uses the variables N PER SPEC and SEC PER SEC to determine how many
counts or how much time should be put in each spectrum. Values of zero (the
default) mean there is no limit. If the value of one or both is non-zero, a new
spectrum will be started after the specified number of events or seconds (of ac-
quisition time).

Usage:

export SW_HIST_DIR=/tmp

medsort -m extract_IC *.med

10.1.42 show correlated buffers

This module shows DGF buffers correlated by their timestamps. It shows the
timestamp and the list of modules which had buffers matching that timestamp.
Usage:

export SW_HIST_DIR=/tmp

medsort -m show_correlated_buffers *.med

which gives an output like:

00000000FEC0 3 4 5 6 17 18 19 20 21 22 23 24 25 26 29 30 37 38 41 42 45 46 54

0000000FE3F2 45 46 43 44

10.1.43 show correlated channels

This module seems to be broken. It should show the correlated channels.

Usage:

export SW_HIST_DIR=/tmp

medsort -m show_correlated_channels *.med

which gives an output like:

29.0 0000000E2DB5 11725 1122

29.1 0000000E2DB5 11725 1125

29.2 0000000E2DB5 11725 0

30.0 0000000E2DB5 11725 0

30.1 0000000E2DB5 11725 0

30.2 0000000E2DB5 11725 0

30.3 0000000E2DB5 11725 0

30

37.0 0000000E32F4 13062 1279

37.1 0000000E32F4 13062 0

37.2 0000000E32F4 13062 0

38.0 0000000E32F5 13062 0

38.1 0000000E32F5 13062 1342

38.2 0000000E32F5 13062 0

38.3 0000000E32F5 13062 0

The first number is the module and channel number, then the timestamp in
hexadecimal, then the trigger time and finally the energy.

10.1.44 med treat file

This module treats an MED file. You must load it from any code that needs
to set up callbacks for opening and closing files or for trigger callbacks directly.
You should not load it from the command line.

10.1.45 med treat subevent

This module treats a subevent of an MED file. You must load it from any code
that needs to set callbacks to unpack particular subevents. You should not load
it from the command line.

10.1.46 med unpack bragg

This module contains the code for unpacking Bragg data. It should be loaded
from any code that needs to treat Bragg data, but not loaded from the com-
mand line directly.

10.1.47 med unpack caen

This module contains the code for unpacking CAEN data. It should be loaded
from any code that needs to treat CAEN data, but not loaded from the com-
mand line directly.

10.1.48 med unpack dgf scalers

This module contains the code for unpacking DGF scaler data. It should be
loaded from any code that needs to treat DGF scaler data, but not loaded from
the command line directly.

31

10.1.49 med unpack dgf

This module contains the code for unpacking DGF data. It should be loaded
from any code that needs to treat DGF data, but not loaded from the command
line directly.

10.1.50 med unpack madc

This module contains the code for unpacking MADC data. It should be loaded
from any code that needs to treat MADC data, but not loaded from the com-
mand line directly.

10.1.51 med unpack mbs timestamp

This module contains the code for unpacking MBS timestamp data. It should
be loaded from any code that needs to treat MBS timestamp data, but not
loaded from the command line directly.

10.1.52 med unpack pattern

This module contains the code for unpacking pattern unit data. It should be
loaded from any code that needs to treat pattern unit data, but not loaded from
the command line directly.

10.1.53 med unpack vme scalers

This module contains the code for unpacking VME scaler data. It should be
loaded from any code that needs to treat VME scaler data, but not loaded from
the command line directly.

10.1.54 ascii

This is a module to write ascii format spectra, either with just the contents of
each channel on a separate line, or with the channel number and its contents on
each line. It should not be loaded from the command line, but should be loaded
by any module that uses either the ascii write or the ascii2 write functions.

10.1.55 gf2

This is a module to write Radware gf2 format spectra. It should not be loaded
from the command line, but should be loaded by any module that uses the

32

gf2 write function.

10.1.56 cracow

This is a module to write GSI Cracow format spectra. It should not be loaded
from the command line, but should be loaded by any module that uses the cra-
cow write function.

10.1.57 raw

This is a module to write little endian raw format spectra either as short in-
tegers, long integers or 4-byte floating point. It should not be loaded from
the command line, but should be loaded by any module that uses one of the
raw short write, raw long write or raw float write functions.

10.1.58 spectrum

This is a module to write spectra in one of the supported formats. The envi-
ronment variable SW HIST DIR is used to determine where the spectra should
be written and the variable SW HIST MODE is used to chose the kind of spec-
trum to write. Valid values for this variable are: “GF2”, “ASCII”, “ASCII2”,
“RAW FLOAT”, “RAW SHORT”, “RAW LONG” and “CRACOW”. It should
not be loaded from the command line, but should be loaded by any module that
uses the increment spectrum function.

It provides two functions:

• int write all spectra();

• int increment spectrum(char *key, uint16 t module, int channel, uint16 t
energy);

The spectra are allocated dynamically and the filenames are based on the com-
bination of the key, the module and the channel number and are written in
the SW HIST DIR. The write all spectra function may be called at any time,
and will automatically be called when the program terminates. It writes any
histograms which have been incremented.

10.1.59 command line

This is a module to handle the command line passed to medsort. It should not
be loaded from the command line, but only used in code that needs to be called
whenever a file is treated.

33

10.1.60 IC to root

This is a module to generate a root tree of the ionisation chamber data. It
also includes the timestamps for the EBIS, T1 and PS signals, so the ionisation
chamber data can be compared to these events.

The variables dE offset, dE slope, dE quad and Erest offset, Erest slope, Er-
est quad are used to set the calibration for the ∆-E and Erest values. If you set
the variable root, the output root file will have this name.

You should load libIC.so in root in order to read such data. This root library is
part of the medsort package and is installed in the root library directory. Note
that if you upgrade root or move it around, you will need to rebuild it or copy
it. To use it:

root

gSystem->Load("libIC");

10.1.61 show adc tdc mismatches

This is a module to check for mismatches between the CAEN ADC data and
the CAEN TDC data. It is probably no longer useful.

10.1.62 correlate buffers

This module correlates DGF buffers together based on their timestamp. It
shouldn’t be called directly from the command line, but should be used by
modules which need to process correlated buffers.

10.1.63 correlate channels

This module correlates DGF channel data together based on their timestamp.
It shouldn’t be called directly from the command line, but should be used by
modules which need to process correlated channels.

10.1.64 calibrate

This module does not yet serve a useful purpose. The aim is to use it to calibrate
the DGF data in order to do things like add back etc. However, for the moment,
there is nothing which can use the calibrated data. So you should not use this
module.

10.1.65 check dgf scaler timestamper 3

This module was written for some specific purpose. It takes looks at the DGF
scalers for the third timestamper DGF and counts the fast peaks in channel 0

34

(the timestamper DGFs only use this channel) and the total number of events.
Every five minutes worth of data, it writes the values to standard output.
Usage:

export SW_HIST_DIR=/tmp

medsort -m check_dgf_scaler_timestamper_3 *.med

which gives an output like:

Tue 13Jul2010 14:24:43 10.753333 10.873333

Tue 13Jul2010 14:29:43 2.876667 13.726667

Tue 13Jul2010 14:34:43 10.326667 24.326667

Tue 13Jul2010 14:39:43 17.496667 41.983333

First comes the timestamp for the data, then the number of events per second
and finally the number of fast peaks per second.

10.1.66 generate 12C1 vs time

This module was written for some specific purpose. It is unlikely to be useful to
anyone. It generates three spectra from channel 12C1, which are written into
the directory pointed to by the SW HIST DIR environment variable) for the
first 50000 events, the next 35000 events and the rest of the events. This was
for checking what happened to that channel when it failed.

Usage:

export SW_HIST_DIR=/tmp

medsort -m generate_12C1_vs_time *.med

35

