
Performing a nearline sort

Nigel Warr

May 2012

Contents

1 Introduction 2

2 Step 1: offl root med 2

3 Step 2: rt ana 3

4 Step 3: g clx ana 4

1



1 Introduction

The purpose of this document is to show how to perform a simple sort of Mini-
ball data at CERN. I distinguish between “online” (performed by Marabou in
real time), “offline” (performed by the user at their home institute as part of
the full analysis for a publication) and “nearline” (sorts performed at CERN
after data has been accumulated, to see how the experiment is going). This
document only considers the nearline sorting.

There are three steps involved:

• Use offl root med to produce .root files from the .med files.

• Use rt ana to loop through the data in the root files and produce a single
root file containing a tree of the useful data.

• Use g clx ana to analyse this tree and generate the plots for the Coulex
analysis.

2 Step 1: offl root med

For each .med file you want to include in the analysis, you have to run offl root med
separately. There are actually two versions of this program, one for Coulex runs
and the other for calibration runs. For Coulex analysis we always want the
one for Coulex runs, which is offl root med run. On pcepis40 and pcepis41 this
program is installed in /usr/bin. You can find out which version is installed
there using the command:

rpm -qf /usr/bin/offl_root_med_run

which will give an output like:

offl_root_med-20110712-1.el6.i686

The 20110712 is a date (12th July 2011) but it is also a tag in my git tree, so if
you know this number, I can figure out exactly which version you used.

Note that on pcepis40 and pcepis41, the /mbdata directory of the DAQ should
be mounted via nfs, so you can read the .med files directly from there.

The syntax for offl root med is somewhat complicated, so there is a simple script
sort data.sh which calls it. This starts of with the definitions of where the ex-
ecutable and the calibration files are and what the basenames of the .med and
.root files are. Then it loops over the specified runs. If the .root file already
exists, that run is skipped, so delete or rename any file you want to overwrite.

For example:

2



/usr/bin/offl_root_med_run \\

/mbdata/miniball/cern-110812/72Kr_104Pd_042.med \\

-1 \\

72Kr_run042 \\

../calfiles/DGF/Cal_dgf_2011.dat \\

../calfiles/Mesytec/Cal_adc_keV_2011.dat dummy.tdc \\

../calfiles/Angles/config_2011_jan_23rotated.dat \\

6 \\

0.75

where we use the executable in /usr/bin to process the .med file which is on
the nfs-mounted directory. The “-1” indicates we process all events. We cre-
ate an output “72Kr run042.root” and use the “Cal dgf 2011.dat” calibration
file for the DGFs, “Cal adc keV 2011.dat” for the Mesytec MADC-32s and the
“config 2011 jan 23rotate.dat” configuration for the angles. There is no TDC
calibration (i.e. the file “dummy.tdc” does not exist). The window is 6 µs wide
and the reference point is 0.75 µs.

At the end of this step, you should have one .root file for each .med file that
you want to include in the analysis.

3 Step 2: rt ana

The second step is to run rt ana, which creates the g clx tree. This is a root
script, which could, in theory, be interpreted, but that would be far too slow, so
we compile it instead. Older versions of this code required the user to hardcode
the list of .root files to process in the source code and recompile, but now it
reads the list from the file rt ana.dat.

So the first step is to create a file rt ana.dat with the list of .root files to process
(i.e. those created by offl root med run in the first step), one filename per line.
Then do the following in root:

• gSystem→Load(“rt ana.so”);

• rt ana x;

• x.Loop(“outputname.root”);

• .q

where outputname.root is the filename you want for the output file. If the file
already exists, it will be overwritten! If you leave out the filename, the default
is rt ana.root.
This should give you a root file with a g clx tree and a few histograms.

3



4 Step 3: g clx ana

Once you have the g clx tree, you can use the g clx ana code to generate
Doppler-corrected background-subtracted histograms.

To do this, you need to write a script with some code like:

g_clx_ana x("72Kr_104Pd_data.root");

x.SetAp(72); // Projectile mass A = 72

x.SetAt(104); // Target mass A = 104

x.SetMeanBetaProjectile(0.035); // Mean beta for projectiles

x.SetMeanBetaTarget(0.035); // Mean beta for target recoils

x.SetCDDistance(30.6); // target-CD distance in mm

x.SetCDRotation(215.5); // Angle of CD

x.SetBackgroundFactor(-0.25); // Factor for background subtraction

// (must be negative)

x.Loop("72Kr_104Pd_ready.root");

Once you’ve done this, you get a root file 72Kr 104Pd ready.root. In it there is a
2-D histogram pp1h. Start root with the filename on the command line (so that
it is automatically opened as file0 ) and turn on the toolbar (View→Toolbar).
Then click on the cutting tool (the scissors icon) and create a cut for the projec-
tile. Then select “SaveAs” by left-clicking on the cut and save it as “pcut.root”
(the option bit is left blank). Repeat for the target recoils, which should be
saved to “tcut.root”.

root 72Kr_104Pd_ready.root

TCanvas *c = new TCanvas();

c->ToggleToolBar();

c->ToggleEventStatus();

pp1h->Draw("colz");

...

click on the scissors and define a region for a cut, double clicking

on the last point to end

...

SaveAs -> pcut.root

...

same for target recoils as tcut.root

.q

Then you can rerun g clx ana again just as above, but this time it will read in
the cuts.

The interesting histograms are coulexTdc and coulexPdc, which are the Doppler-
corrected background-subtracted γ-ray spectra gated on the target and projec-
tile cuts, respectively.

4


